当前位置: 高中学习网 > 高中 > 高考

2017高考陕西数学答案,陕西省高考数学试卷

  • 高考
  • 2023-07-26

2017高考陕西数学答案?答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.二、那么,2017高考陕西数学答案?一起来了解一下吧。

2017年陕西数学中考原卷

国庆节期间,电器市场火爆.某商店需要购进睁大一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:

类别

电视机

洗衣机

进价(元/台)

1 800

1 500

售价(元/台)

2 000

1 600

计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.

(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)

(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

【答案】

(1)6种进货方案 (2)当x=39时,商店获利最多为13 900元.

今秋,某市白玉村基亮水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.

(1)王灿如何安排甲、乙两种货车可一次悉锋竖性地运到销售地?有几种方案?

(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?

【答案】

(1)安排甲、乙两种货车有三种方案(2)方案一运费最少,最少运费是2 040元

2017数学中考题及答案

一、选择题

1.(哈尔滨质检)设U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则下图中阴影部分表示的集合为()

A.{x|x≥1} B.{x|1≤x<2}

C.{x|0

答案:B命题立意:本题考查集合的概念、运算及韦恩图知识的综合应用,难度较小.

解题思路:分别化简两集合可得A={x|0

易错点拨:本题要注意集合B表示函数的定义域,阴影部分可视为集合A,B的交集在集合A下的补集,结合数轴解答,注意等号能否取到.

2.已知集合A={0,1},则满足条件AB={0,1,2,3}的集合B共有()

A.1个 B.2个 C.3个 D.4个

答案:D命题立意:本题考查集合间的运算、集合间的关系,键桥难度较小.

解题思路:由题知B集合必须含有元素2,3,可以是{2,3},{0,2,3},{1,2,3},{0,1,2,3},共4个,故选D.

易错点拨:本题容易忽视集合本身{0,1,2,3}的情况,需要强化集合也是其本身的子集的意识.

3.设A,B是两个非空集合,定义运算A×B={x|xA∪B且xA∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=()

A.[0,1](2,+∞) B.[0,1)[2,+∞)

C.[0,1] D.[0,2]

答案:A命题立意:本题属于创新型的集合问题,准确理解运算的新定义是解决问题的关键.对于此类新定义的集合问题,求解时要准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.

解题思路:由题意得A={x|2x-x2≥0}={x|0≤x≤迟扰2},B={y|y>1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).

4.已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()

A.[2,3] B.(-∞,-1][3,+∞)

C.(2,3] D.(-∞,-1](3,+∞)

答案:C解题思路:因为P={x|-1≤x≤2},Q={x|1

5.已知集合M={1,2,3,4,5},N=,则M∩N=()

A.{4,5} B.{1,4,5}

C.{3,4,5} D.{1,3,4,5}

答案:C命题立意:本题考查不等式的解法与交集的意义,难度中等.

解题思路:由≤1得≥0,x<1或x≥3,即N={x|x<1或x≥3},M∩N={3,4,5},故选C.

6.对于数集A,B,定义A+B={x|x=a+b,aA,bB},A÷B=.若集合A={1,2},则集合(A+A)÷A中所有元素之和为()

A. B.

C. D.

答案:D命题立意:本题考查考生接受新知识的能力与集合间的运算,难度中等.

解题思路:依题意得A+A={2,3,4},(A+A)÷A={2,3,4}÷{1,2}=,因此集合(A+A)÷A中所有元素的和等于1++2+3+4=,故选D.

7.已知集合A=kZsin(kπ-θ)=

,B=kZcos(kπ+θ)=cos θ,θ,则(ZA)∩B=()

A.{k|k=2n,nZ} B.{k|k=2n-1,nZ}

C.{k|k=4n,nZ} D.{k|k=4n-1,nZ}

答案:A命题立意:本题考查诱导公式及集合的运算,根据诱导公式对k的奇偶性进行讨论是解答本题的关键,难度码亮旦较小.

解题思路:由诱导公式得A={kZ|k=2n+1,nZ},B={kZ|k=2n,nZ},故(ZA)∩B={kZ|k=2n,nZ},故选A.

8.已知M={x||x-1|>x-1},N={x|y=},则M∩N等于()

A.{x|1

C.{x|1≤x≤2} D.{x|x<0}

答案:B解题思路:(解法一)直接法:可解得M={x|x<1},N={x|0≤x≤2},所以M∩N={x|0≤x<1},故选B.

(解法二)排除法:把x=0代入不等式,可以得到0M,0N,则0M∩N,所以排除A,C,D.故选B.

9.(郑州一次质量预测)已知集合A={2,3},B={x|mx-6=0},若BA,则实数m=()

A.3 B.2

C.2或3 D.0或2或3

答案:D命题立意:本题考查了集合的运算及子集的概念,体现了分类讨论思想的灵活应用.

解题思路:当m=0时,B=A;当m≠0时,由B={2,3},可得=2或=3,解得m=3或m=2.综上可得,实数m=0或2或3,故选D.

二、填空题

10.已知集合A={x||x-1|<2},B={x|log2 x<2},则A∩B=________.

答案:{x|0

解题思路:将两集合化简得A={x|-1

11.(四川南充质检)同时满足M⊆{1,2,3,4,5};a∈M,则(6-a)M的非空集合M有________个.

答案:7命题立意:本题考查集合中元素的特性,难度中等.

解题思路: 非空集合M{1,2,3,4,5},且若aM,则必有6-aM,那么满足上述条件的集合M有{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.

12.设集合A=,B={y|y=x2},则A∩B等于______.

答案:{x|0≤x≤2}解题思路: A=={x|-2≤x≤2},B={y|y=x2}={y|y≥0}, A∩B={x|0≤x≤2}.

13.设A是整数集的一个非空子集,对于kA,如果k-1A且k+1A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.

答案:6命题立意:本题主要考查集合的新定义,正确理解新定义,得出构成的不含“好元素”的集合均为3个元素紧邻的集合,是解决本题的关键.

解题思路:依题意可知,若由S的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.

14.已知集合A=,B={(x,y)|x2+(y-1)2≤m},若AB,则m的取值范围是________.

答案:[2,+∞)命题立意:本题主要考查线性规划知识,意在综合考查圆的方程、点和圆的位置关系以及数形结合思想.

解题思路:作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,,由AB得三角形所有点都在圆的内部,故≥,解得m≥2.

15.已知R是实数集,集合A={y|y=x2-2x+2,xR,-1≤x≤2},集合B=,任取xA,则xA∩B的概率等于________.

答案:命题立意:本题主要考查函数的图象与性质、不等式的解法、几何概型的意义等基础知识,意在考查考生的运算能力.

解题思路:依题意得,函数y=x2-2x+2=(x-1)2+1.当-1≤x≤2时,函数的值域是[1,5],即A=[1,5];由>1得>0,x4,即B=(-∞,3)(4,+∞),A∩B=[1,3)(4,5],因此所求的概率等于=.

16.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)M,存在(x2,y2)M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:

M=; M={(x,y)|y=ex-2};

M={(x,y)|y=cos x}; M={(x,y)|y=ln x}.

其中是“垂直对点集”的序号是________.

答案:解题思路:对于,注意到x1x2+=0无实数解,因此不是“垂直对点集”;对于,注意到过原点任意作一条直线与曲线y=ex-2相交,过原点与该直线垂直的直线必与曲线y=ex-2相交,因此是“垂直对点集”;对于,与同理;对于,注意到对于点(1,0),不存在(x2,y2)M,使得1×x2+0×ln x2=0,因为x2=0与x2>0矛盾,因此不是“垂直对点集”.综上所述,故填.

B组

一、选择题

1.命题:x,yR,若xy=0,则x=0或y=0的逆否命题是()

A.x,yR,若x≠0或y≠0,则xy≠0

B.x,yR,若x≠0且y≠0,则xy≠0

C.x,yR,若x≠0或y≠0,则xy≠0

D.x,yR,若x≠0且y≠0,则xy≠0

答案:D命题立意:本题考查命题的四种形式,属于对基本概念层面的考查,难度较小.

解题思路:对于原命题:如果p,则q,将条件和结论既“换质”又“换位”得如果非q,则非p,这称为原命题的逆否命题.据此可得原命题的逆否命题为D选项.

易错点拨:本题有两处高频易错点,一是易错选B,忽视了“x,yR”是公共的前提条件;二是错选C,错因是没有将逻辑联结词“或”进行否定改为“且”.

2.已知命题p:“直线l平面α内的无数条直线”的充要条件是“lα”;命题q:若平面α平面β,直线aβ,则“aα”是“aβ”的充分不必要条件.则真命题是()

A.pq B.p绨q

C.绨p绨q D.绨pq

答案:D解题思路:由题意可知,p为假命题,q为真命题,因此绨pq为真命题,故选D.

3.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x0,使2x0<0.下列选项中为真命题的是()

A.绨p B.q

C.绨pq D.绨qp

答案:D命题立意:本题考查复合命题的真假性判定规则,难度中等.

解题思路:依题意,命题p是真命题,命题q是假命题,因此绨p是假命题,绨qp是真命题,绨pq是假命题,故选D.

4.已知命题p1:函数y=x--x在R上为减函数;p2:函数y=x+-x在R上为增函数.在命题q1:p1p2,q2:p1p2,q3:(绨p1)p2和q4:p1(绨p2)中,真命题是()

A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4

答案:C命题立意:本题考查含有逻辑联结词的命题的真假,难度中等.

解题思路:先判断命题p1,p2的真假,再判断复合命题的真假.因为函数y=x-2x是R上的减函数,所以命题p1是真命题;因为x=1和x=-1时,都有y=+2=,所以函数y=x+2x不是R上的增函数,故p2是假命题,所以p1p2是真命题,p1p2是假命题,(绨p1)p2是假命题,p1(绨p2)是真命题,所以真命题是q1,q4,故选C.

5.下列有关命题的说法正确的是()

A.命题“若x=y,则sin x=sin y”的逆否命题为真命题

B.函数f(x)=tan x的定义域为{x|x≠kπ,kZ}

C.命题“x∈R,使得x2+5x+1>0”的否定是:“x∈R,均有x2+5x+1<0”

D.“a=2”是“直线y=-ax+2与y=x-1垂直”的必要不充分条件

答案:A命题立意:本题考查常用逻辑用语的有关知识,难度较小.

解题思路:A正确,因为原命题为真,故其等价命题逆否命题为真;B错误,定义域应为;C错误,否定是:x∈R,均有x2+x+1≥0;D错误,因为两直线垂直充要条件为(-a)×=-1a=±2,故“a=2”是“直线y=-ax+2与y=x-1垂直”的充分不必要条件,故选A.

6.在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

答案:C命题立意:本题考查向量共线与充要条件的意义,难度中等.

解题思路:由λ∈R,使得=λ,=λ得ABCD,ADBC,四边形ABCD为平行四边形;反过来,由四边形ABCD为平行四边形得=1·,=1·.因此,在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的充要条件,故选C.

7.下列说法错误的是()

A.命题“若x2-4x+3=0,则x=3”的逆否命题是“若x≠3,则x2-4x+3≠0”

B.“x>1”是“|x|>0”的充分不必要条件

C.若pq为假命题,则p,q均为假命题

D.命题p:“x∈R,使得x2+x+1<0”,则绨p:“x∈R,使得x2+x+1≥0”

答案:C命题立意:本题主要考查常用逻辑用语的相关知识,考查考生分析问题、解决问题的能力.

解题思路:根据逆命题的构成,选项A中的说法正确;x>1一定可得|x|>0,但反之不成立,故选项B中的说法正确;且命题只要p,q中一个为假即为假命题,故选C中的说法不正确;特称命题的否定是全称命题,选项D中的说法正确.

8.下列说法中不正确的个数是()

命题“x∈R,x3-x2+1≤0”的否定是“x0∈R,x-x+1>0”;

若“pq”为假命题,则p,q均为假命题;

“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.

A.0 B.1 C.2 D.3

答案:B命题立意:本题主要考查简易逻辑知识,难度较小.

解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为假,则p,q中至少有一个为假,不需要均为假,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b<0时,b=-;若b=,有可能a=0,b=0,c=0,则a,b,c不成等比数列,故正确.综上,故选B.

知识拓展:在判定命题真假时,可以试图寻找反例,若能找到反例,则命题为假.

9.已知f(x)=3sin x-πx,命题p:x∈,f(x)<0,则()

A.p是真命题,绨p:x∈,f(x)>0

B.p是真命题,绨p:x0∈,f(x0)≥0

C.p是假命题,绨p:x∈,f(x)≥0

D.p是假命题,绨p:x0∈,f(x0)≥0

答案:B命题立意:本题主要考查函数的性质与命题的否定的意义等基础知识,意在考查考生的运算求解能力.

解题思路:依题意得,当x时,f′(x)=3cos x-π<3-π<0,函数f(x)是减函数,此时f(x)

10.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()

A.必要而不充分的条件 B.充分而不必要的条件

C.充要条件 D.既不充分也不必要的条件

答案:C解题思路:φ(a,b)=0,即=a+b,又a≥0,b≥0,所以a2+b2=(a+b)2,得ab=0;反之当ab=0时,必有φ(a,b)=-a-b=0,所以φ(a,b)=0是a与b互补的充要条件,故选C.

二、填空题

11.命题p:x∈R,使3cos2+sin cos

答案:(-,1]解题思路:3cos2+sin cos =+sin x=++sin x=+=+sin,故命题p正确的条件是+a>-,即a>-.

对于命题q,因为x>0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.

综上,命题pq为真,即p真q真时,a的取值范围是(-,1].

12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.

答案:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.

解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.

13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,则实数c的取值范围为________.

答案:(1,+∞)命题立意:本题主要考查命题真假的判断,在解答本题的过程中,要考虑有p真q假或p假q真两种情况.

解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q假,则01,所以实数c的取值范围为.

14.给出下列四个结论:

命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;

函数f(x)=x-sin x(xR)有3个零点;

对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).

其中正确结论的序号是________.(请写出所有正确结论的序号)

答案:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)<0,

f′(x)>g′(x),正确.

15.(北京海淀测试)给出下列命题:

“α=β”是“tan α=tan β”的既不充分也不必要条件;

“p为真”是“p且q为真”的必要不充分条件;

“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;

“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.

其中真命题的序号是________.

答案:命题立意:本题考查充分条件、必要条件的判断,难度中等.

解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.

2016年陕西省数学中考

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选消历肢考题:共10分。

2019年中考陕西卷数学及答案

你答案错了。

|3cosa+4sina-a-4|max=17,则 -17=<3cosa+4sina-a-4<=17, 所以当取最大值17时, 3cosa+4sina应取最大值5, 5-a-4=17, 得庆胡源a=-16, 但此时我们不知道3cosa+4sina-a-4 最小值是否会小于-17,代入可知,3cosa+4sina-a-4在a=-16 时的誉态最小值为7.符合题意。同理取最小值-17时,3cosa+4sina应取最小值 -5,-5-a-4=-17,做大得a=8. 此时最大值为-7。符合题意。 所以a为8 或 -16.

18和-26 是由于没有考虑绝对值内取得最大(小)值时,参数值也应该相对应的去最大(小)值。将18,和-26,代入即可得到绝对值的最大值是27.而非17。

2017陕西中考数学真题

一、选择题

1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()

A.0 B.1 C.0或 D.1或

答案:C命题立意:本题考查导数的应用,难度中等.

解题思路:直线x-y+3=0的倾斜角为45°,

切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.

易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.

2.设函数f(x)=则满足f(x)≤2的x的取值范围是()

A.[-1,2] B.[0,2]

C.[1,+∞) D.[0,+∞)

答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.

解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.

3.函数y=x-2sin x,x的大致图象是()

答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.

4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()

A. B. C.12 D.24

答案:D命题立意:本题考查指数式的运算,难度中等.

解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()

A.(0,1) B.(0,2) C.(1,2) D.(0,3)

答案:

A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,

即f(x)=0或衡伍f(x)=a.

如图,作出函数的图象,

由函数图象可知,f(x)=0的解有两个,

故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0

6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0

A.4 020 B.4 022 C.4 024 D.4 026

答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.

解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.

又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.

7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()

A. B.

C. D.

答案:A思路点拨:当x∈时,则1<≤3,

f(x)=2f=2ln=-2ln x.

f(x)=

g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.

当x∈时,y=-,

y′=<0,

y=-在上递减,

y∈(0,6ln 3).

当x[1,3]时,y=,

y′=,

y=在[1,e]上递增,在[e,3]上递减.

结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.

8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()

A.(0,1) B.(0,1)(1,)

C.(1,) D.[,+∞)

答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1

9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()

A. B.

C. D.

答案:

C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.

解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-

10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:

(1)对任意a,bR,a*b=b*a;

(2)对任意aR,a*0=a;

(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()

A.0 B.1 C.2 D.3

答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.

二、填空题

11.已知f(x)=若f[f(0)]=4a,则实数a=________.

答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.

解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.

答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.

解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).

13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.

答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.

解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.

14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0

答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.

解题思路:由题意可知,ln +ln =0,

即ln=0,从而×=1,

化简得a+b=1,

故ab=a(1-a)=-a2+a=-2+,

又0

故0<-2+<.

B组

一、选择题

1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()

A. B.

C. D.

答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,

以上就是2017高考陕西数学答案的全部内容,7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为___.答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=。

猜你喜欢