当前位置: 高中学习网 > 高中 > 高考

2017文数高考题,2017年全国高考文科数学一卷

  • 高考
  • 2023-07-30

2017文数高考题?答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),那么,2017文数高考题?一起来了解一下吧。

2019高考文数1详细答案

今天是2017全国高考的第一天,今天早上进行的是语文考试。在考试结束后各地的语文作文题目也纷纷泄露,包括全国卷和各地区的考试题目,下面我们一起来看看这些题目汇总吧

全国卷I:老外眼中的中国关键词

(适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建)

据近期一项对来华留学生的调查,他们较为关注的“中国关键词”有:一带一路、大熊猫、

广场舞、中华美食、长城、共享单车、京剧、空气污染、美丽乡村、食品安全、高铁、移动支付。

请从中选择两三个关键词来呈现你所认识的中国,写一篇文章帮助外国青年读懂中国。要求选好关键词,使之形成邮寄的关联;选好角度,明确文体,自拟标题;不要套作,不得抄袭,不少于800字。

全国卷II:根据古诗句自拟文

(适用地区:甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南)

阅读下面的材料,根据要求写作。

1、天行健,君子以自强不息《周易》

2、露从今夜白,月是故乡明(杜甫)

3、何须浅碧深红色,自是花中第一流(李清照)

4、受光于庭户见一堂,受光于天下照四方(魏源)

5、必须敢于正视,这才可望,敢想,敢说,敢做,敢当(鲁迅)

6、数风流人物,还看今朝(毛泽东)

中国文化博大精深,无数名句化育后世。

2017语文高考全国卷1

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。所以很多考生出了考场之后的反应就是数学题太难了,下面我跟大家2017年高考数学难吗?听听销行专家怎么说,欢迎阅读。

2017年高考数学难吗

2017年的高考数学(以全国Ⅱ卷为例)试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。体现出命题人关注考生学习高中数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。

今年高考数学试题注重考查了高中数学基础知识、基本技能和基本方法,题目难度与往年基本持平,简单题目的设计并没有太多的陷阱,但是需要注意计算问题,复杂题目数量较少昌首,整套高考数学试卷更关注平时的基础和熟练程度,符合高考改革的方向。

通过今年的高考数学题,我们再次看到,高考数学试题绝对难度其实并不大,但是对于平时基础的高中数学学习要求却很高,对于计算能力的考察也是重点,这就要求学生在学习高中数学的过程中加强对基础知识的熟练程度。高考数学一定是侧重能力的考查,我们更应该关注是数学的本质,在学习高中数学的过程中注意理解,不要把数学变成一种机械的形式主义,一味死板的操作,注意数学的逻辑性、目的性,善于观察题目、分析题目、反思题目。

2017历史高考题

一、选择题

1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()

A.0 B.1 C.0或 D.1或

答案:C命题立意:本题考查导数的应用,难度中等.

解题思路:直线x-y+3=0的倾斜角为45°,

切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.

易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.

2.设函数f(x)=则满足f(x)≤2的x的取值范围是()

A.[-1,2] B.[0,2]

C.[1,+∞) D.[0,+∞)

答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.

解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.

3.函数y=x-2sin x,x的大致图象是()

答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.

4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()

A. B. C.12 D.24

答案:D命题立意:本题考查指数式的运算,难度中等.

解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()

A.(0,1) B.(0,2) C.(1,2) D.(0,3)

答案:

A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,

即f(x)=0或衡伍f(x)=a.

如图,作出函数的图象,

由函数图象可知,f(x)=0的解有两个,

故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0

6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0

A.4 020 B.4 022 C.4 024 D.4 026

答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.

解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.

又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.

7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()

A. B.

C. D.

答案:A思路点拨:当x∈时,则1<≤3,

f(x)=2f=2ln=-2ln x.

f(x)=

g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.

当x∈时,y=-,

y′=<0,

y=-在上递减,

y∈(0,6ln 3).

当x[1,3]时,y=,

y′=,

y=在[1,e]上递增,在[e,3]上递减.

结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.

8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()

A.(0,1) B.(0,1)(1,)

C.(1,) D.[,+∞)

答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1

9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()

A. B.

C. D.

答案:

C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.

解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-

10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:

(1)对任意a,bR,a*b=b*a;

(2)对任意aR,a*0=a;

(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()

A.0 B.1 C.2 D.3

答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.

二、填空题

11.已知f(x)=若f[f(0)]=4a,则实数a=________.

答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.

解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.

答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.

解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).

13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.

答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.

解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.

14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0

答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.

解题思路:由题意可知,ln +ln =0,

即ln=0,从而×=1,

化简得a+b=1,

故ab=a(1-a)=-a2+a=-2+,

又0

故0<-2+<.

B组

一、选择题

1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()

A. B.

C. D.

答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,

2017年全国高考文科数学一卷

选择12题,1-12题,共60分

填空4题,13-16题,共20分

解答裤禅题6题,共70分,17--21题是必做题,碰纯敏22-24题选笑枝做一题,多做按第一题计分

求采纳@_@

2017高考英语全国卷三

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选消历肢考题:共10分。

以上就是2017文数高考题的全部内容,文科的就是简单!解法一:因为tana=1/3,所以sina=1/√(3^2+1^1)=1/√10。由正弦定理得:ab/sin150=bc/sina'ab=(1/2)*bc/(1/√10)=√(5/2)。=(√10)/2 解法二:tana=1/3。

猜你喜欢