当前位置: 高中学习网 > 高中

高中全部函数公式大全,高中函数公式大全及图解

  • 高中
  • 2023-08-05

高中全部函数公式大全?1、sin(A+B) = sinAcosB+cosAsinB;2、sin(A-B) = sinAcosB-cosAsinB;3、cos(A+B) = cosAcosB-sinAsinB;4、cos(A-B) = cosAcosB+sinAsinB;5、tan(A+B) = (tanA+tanB)/(1-tanAtanB);6、那么,高中全部函数公式大全?一起来了解一下吧。

导数公式大全

高中数学函数公式

高中数学函数公式是考试的考点之一,下面我为大家精心整理的高中数学函数公式,欢迎大家阅读与学习!

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。

函数 的图象与直线 交点的个数为 个。

二、函数的三要素:

相同函数的判断方法:① ;② (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

① ,则 ; ② 则 ;

③ ,则 ; ④如: ,则早歼派 ;

⑤含参问题的定义域要分类讨论;

如:已知函数 的定义域是 ,求 的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

数学函数公式

公式一:同角关系

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(kπ+α)=-sinα k∈z

cos(kπ+α)=-cosα k∈z

tan(kπ+α)=tanα k∈z

cot(kπ+α)=cotα k∈z

公式三: 任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六: π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

诱导公式记忆口诀:“奇变偶不变,符号看绝中象限”。

高中函数知识点总结

高中数学合集

pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

简介:高中数学优质资料,包括:试顷携题试卷雀皮伏、课件、教材、、各大名师网握渗校合集。

数学函数高中公式

三角公式

倒数握岩关系:sina*csca=cosa*seca=tga*ctga=1

平方关系:sin^a+cos^a =sec^ a-tg^ a=csc^a-ctg^a=1

和差公式:

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-cosasinb(将上式的b用-b代替即得)

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb(将上式的b用-b代替即得)

tg(a+b)=(tga+tgb)/(1-tgatgb)

二倍角公式:(含万能公式)

sin2a=2sinacosa=2tga/(1+tg^a)

cos2a=2cos^a-1=1-2sin^a=(1-tg^a)/(1+tg^a)

tg2a=2tga/(1-tg^a)

半角公式:

(sina)^=(1-cos2a)/2(将a用a/2代替即得半角族皮仔描述)

(cosa)^=(1+cos2a)/2

(tga)^=(1-cos2a)/(1+cos2a)

三兆汪倍角公式:

sin3a= 3sina-4sin^3 a

cos3a=-3cosa+4cos^3 a

积化和差公式:

sinacosb= [sin(a+b)+sin(a-b)]/2 (将上面关于sin的和差公式相加除以2即得)

cosasinb= [sin(a+b)-sin(a-b)]/2 (将上面关于sin的和差公式相减除以2即得)

cosacosb= [cos(a+b)+cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)

sinasinb=-[cos(a+b)-cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)

和差化积公式:

sina+sinb= 2sin(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)

sina-sinb= 2cos(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)

cosa+cosb= 2cos(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)

cosa-cosb=-2sin(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)

高中函数公式

函数:一次函数 y=kx+b (k为任意不为零常数,b为任意常数)

正比例函数闭扒谈 y=kx(k为常数,且k≠0)

反比例函数 y=k/x (k为常数轿碰,k≠0)

二次函数y=ax^2;+bx+c(a≠0,a、b、c为常数) 顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k

交点式(与x轴):y=a(x-x1)(x-x2)

·········································································································

三角函数公式:

正弦(此梁sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

sin30°=1/2

sin45°=根号2/2

sin60°=根号3/2

cos30°=根号3/2

cos45°=根号2/2

cos60°=1/2

tan30°=根号3/3

tan45°=1

tan60°=根号3

··················································································································································································

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB �

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA) �

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

Sin2A=2SinA�6�1CosA

Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1

tan2A=2tanA/1-tanA^2

三倍角公式

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

半角公式

和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tanA=tanA = sinA/cosA

万能公式

【词语】:万能公式

【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}

cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}

tana=[2tan(a/2)]/{1-[tan(a/2)]^2}

将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换。

以上就是高中全部函数公式大全的全部内容,公式一:同角关系 sin(2kπ+α)=sinα k∈z cos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈z cot(2kπ+α)=cotα k∈z 公式二: 设α为任意角。

猜你喜欢