2017高考试卷数学答案?答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.二、那么,2017高考试卷数学答案?一起来了解一下吧。
高中数学合集
pan.baidu/s/1znmI8mJTas01m1m03zCRfQ
1234
简介:高中肢游数学优质资料,包括:试题试卷、课羡返件、教兄饥饥材、、各大名师网校合集。
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
答案:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()
A. B. C.12 D.24
答案:D命题立意:本题考查指数式的运算,难度中等.
解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.
5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()
A.(0,1) B.(0,2) C.(1,2) D.(0,3)
答案:
A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,
即f(x)=0或衡伍f(x)=a.
如图,作出函数的图象,
由函数图象可知,f(x)=0的解有两个,
故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0
6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0
A.4 020 B.4 022 C.4 024 D.4 026
答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.
解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.
又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.
7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()
A. B.
C. D.
答案:A思路点拨:当x∈时,则1<≤3,
f(x)=2f=2ln=-2ln x.
f(x)=
g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.
当x∈时,y=-,
y′=<0,
y=-在上递减,
y∈(0,6ln 3).
当x[1,3]时,y=,
y′=,
y=在[1,e]上递增,在[e,3]上递减.
结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.
8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()
A.(0,1) B.(0,1)(1,)
C.(1,) D.[,+∞)
答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1
9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()
A. B.
C. D.
答案:
C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.
解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-
10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:
(1)对任意a,bR,a*b=b*a;
(2)对任意aR,a*0=a;
(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()
A.0 B.1 C.2 D.3
答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.
当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.
二、填空题
11.已知f(x)=若f[f(0)]=4a,则实数a=________.
答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.
解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.
12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.
答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.
解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).
13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.
答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.
解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.
14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0
答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.
解题思路:由题意可知,ln +ln =0,
即ln=0,从而×=1,
化简得a+b=1,
故ab=a(1-a)=-a2+a=-2+,
又0
故0<-2+<.
B组
一、选择题
1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()
A. B.
C. D.
答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,
一、选择题
1.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1|·|FP3|
答案:C解题思路:抛物线的准线方程为x=-,由定义得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,则|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故选C.
2.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()
A.4B.2C.2D.
答案:C命题立意:本题考查直线与抛物线及圆的位置关系的应用,难度中等.
解题思路:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0,因为直线与抛物线相切,故Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2),因此过A,B两点最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.
3.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
答案:C命题立意:本题考查抛物线定义的应用及抛物线方程的求解,难度中等.
解题思路:如图,分别过点A,B作抛物线准线的垂线,垂足分别为E,D,由抛物线定义可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,则GF即为ACE的中位线,故|GF|=p==,因此抛物线方程为y2=2px=3x.
4.焦点在x轴上的双曲线C的左焦点为F,右顶点为A,若线段FA的中垂线与双曲线C有公共点,则双曲线C的离心率的取值范围是()
A.(1,3) B.(1,3]
C.(3,+∞) D.[3,+∞)
答案:D命题立意:本题主要考查双曲线的离心率问题,考查考生的化归与转化能力.
解题思路:设AF的中点C(xC,0),由题意xC≤-a,即≤-a,解得e=≥3,故选D.
5.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当AOB的面积取值时,直线l的搭肆斜率等于()
A. B.- C.± D.-
答案:B命题透析:本题考查直线与圆的位置关系以及数形结合的数学思想.
思路点拨:由y=,得x2+y2=1(y≥0),即该曲线表示圆心在原点,半径为1的上半圆,如图所示.
故SAOB=|OA||OB|·sin AOB=sin AOB,所以当sin AOB=1,即OAOB时,SAOB取得值,此时O到直线l的距离d=|OA|sin 45°=.设此时直线l的方程为y=k(x-),即kx-y-k=0,则有=,解得k=±,由图可知直线l的倾斜角为钝角,故k=-.
6.点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正知渗轿确的是()
A.直线l上的所有点都是“正点”
B.直线l上仅有有限个点是“正点”
C.直线l上的所有点都不是“正点”
喊或D.直线l上有无穷多个点(点不是所有的点)是“正点”
答案:A解题思路:本题考查直线与抛物线的定义.设A(m,n),P(x,x-1),则B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得关于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有实数解.
二、填空题
7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为________.
答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=,
|OA|2=x+y=;
同理|OB|2=.
故|OA|2·|OB|2=·=.
=≤(当且仅当k=±1时,取等号), |OA|2·|OB|2≥,
又b>a>0,
故SAOB=|OA|·|OB|的最小值为.
8.已知直线y=x与双曲线-=1交于A,B两点,P为双曲线上不同于A,B的点,当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=________.
答案:解题思路:设点A(x1,y1),B(x2,y2),P(x0,y0),则由得y2=,y1+y2=0,y1y2=-,
x1+x2=0,x1x2=-4×.
由kPA·kPB=·====知kPA·kPB为定值.
9.设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)D,则目标函数z=x+y的值为______.
答案:
3解题思路:本题考查双曲线、抛物线的性质以及线性规划.双曲线y2-=1的两条渐近线为y=±x,抛物线y2=-8x的准线为x=2,当直线y=-x+z过点A(2,1)时,zmax=3.
三、解答题
10.已知抛物线y2=4x,过点M(0,2)的直线与抛物线交于A,B两点,且直线与x轴交于点C.
(1)求证:|MA|,|MC|,|MB|成等比数列;
(2)设=α,=β,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.
解析:(1)证明:设直线的方程为:y=kx+2(k≠0),
联立方程可得得
k2x2+(4k-4)x+4=0.
设A(x1,y1),B(x2,y2),C,
则x1+x2=-,x1x2=,
|MA|·|MB|=|x1-0|·|x2-0|=,
而|MC|2=2=,
|MC|2=|MA|·|MB|≠0,
即|MA|,|MC|,|MB|成等比数列.
(2)由=α,=β,得
(x1,y1-2)=α,
(x2,y2-2)=β,
即得:α=,β=,
则α+β=,
由(1)中代入得α+β=-1,
故α+β为定值且定值为-1.
11.如图,在平面直角坐标系xOy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点,过R,P分别作直线l1,l2,使l1PF,l2l,l1∩l2=Q.
(1)求动点Q的轨迹C的方程;
(2)在直线l上任取一点M作曲线C的两条切线,设切点为A,B,求证:直线AB恒过一定点;
(3)对(2)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.
解题思路:本题考查轨迹方程的求法及直线与抛物线的位置关系.(1)利用抛物线的定义即可求出抛物线的标准方程;(2)利用导数及方程根的思想得出两切点的直线方程,进一步求出直线恒过的定点;(3)分别利用坐标表示三条直线的斜率,从而化简证明即可.
解析:(1)依题意知,点R是线段PF的中点,且RQ⊥FP,
RQ是线段FP的垂直平分线. |QP|=|QF|.故动点Q的轨迹C是以F为焦点,l为准线的抛物线,其方程为:x2=4py(p>0).
(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).
由x2=4py得y=x2,求导得y′=x.
两条切线方程为y-y1=x1(x-x1),
y-y2=x2(x-x2),
对于方程,代入点M(m,-p)得,
-p-y1=x1(m-x1),又y1=x,
-p-x=x1(m-x1),
整理得x-2mx1-4p2=0.
同理对方程有x-2mx2-4p2=0,
即x1,x2为方程x2-2mx-4p2=0的两根.
x1+x2=2m,x1x2=-4p2.
设直线AB的斜率为k,k===(x1+x2),
所以直线的方程为y-=(x1+x2)(x-x1),展开得:
y=(x1+x2)x-,
将代入得:y=x+p.
直线恒过定点(0,p).
一、选择题
1.(哈尔滨质检)设U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则下图中阴影部分表示的集合为()
A.{x|x≥1} B.{x|1≤x<2}
C.{x|0
答案:B命题立意:本题考查集合的概念、运算及韦恩图知识的综合应用,难度较小.
解题思路:分别化简两集合可得A={x|0
易错点拨:本题要注意集合B表示函数的定义域,阴影部分可视为集合A,B的交集在集合A下的补集,结合数轴解答,注意等号能否取到.
2.已知集合A={0,1},则满足条件AB={0,1,2,3}的集合B共有()
A.1个 B.2个 C.3个 D.4个
答案:D命题立意:本题考查集合间的运算、集合间的关系,键桥难度较小.
解题思路:由题知B集合必须含有元素2,3,可以是{2,3},{0,2,3},{1,2,3},{0,1,2,3},共4个,故选D.
易错点拨:本题容易忽视集合本身{0,1,2,3}的情况,需要强化集合也是其本身的子集的意识.
3.设A,B是两个非空集合,定义运算A×B={x|xA∪B且xA∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=()
A.[0,1](2,+∞) B.[0,1)[2,+∞)
C.[0,1] D.[0,2]
答案:A命题立意:本题属于创新型的集合问题,准确理解运算的新定义是解决问题的关键.对于此类新定义的集合问题,求解时要准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.
解题思路:由题意得A={x|2x-x2≥0}={x|0≤x≤迟扰2},B={y|y>1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=()
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
答案:C解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知集合M={1,2,3,4,5},N=,则M∩N=()
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
答案:C命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x<1或x≥3,即N={x|x<1或x≥3},M∩N={3,4,5},故选C.
6.对于数集A,B,定义A+B={x|x=a+b,aA,bB},A÷B=.若集合A={1,2},则集合(A+A)÷A中所有元素之和为()
A. B.
C. D.
答案:D命题立意:本题考查考生接受新知识的能力与集合间的运算,难度中等.
解题思路:依题意得A+A={2,3,4},(A+A)÷A={2,3,4}÷{1,2}=,因此集合(A+A)÷A中所有元素的和等于1++2+3+4=,故选D.
7.已知集合A=kZsin(kπ-θ)=
,B=kZcos(kπ+θ)=cos θ,θ,则(ZA)∩B=()
A.{k|k=2n,nZ} B.{k|k=2n-1,nZ}
C.{k|k=4n,nZ} D.{k|k=4n-1,nZ}
答案:A命题立意:本题考查诱导公式及集合的运算,根据诱导公式对k的奇偶性进行讨论是解答本题的关键,难度码亮旦较小.
解题思路:由诱导公式得A={kZ|k=2n+1,nZ},B={kZ|k=2n,nZ},故(ZA)∩B={kZ|k=2n,nZ},故选A.
8.已知M={x||x-1|>x-1},N={x|y=},则M∩N等于()
A.{x|1
C.{x|1≤x≤2} D.{x|x<0}
答案:B解题思路:(解法一)直接法:可解得M={x|x<1},N={x|0≤x≤2},所以M∩N={x|0≤x<1},故选B.
(解法二)排除法:把x=0代入不等式,可以得到0M,0N,则0M∩N,所以排除A,C,D.故选B.
9.(郑州一次质量预测)已知集合A={2,3},B={x|mx-6=0},若BA,则实数m=()
A.3 B.2
C.2或3 D.0或2或3
答案:D命题立意:本题考查了集合的运算及子集的概念,体现了分类讨论思想的灵活应用.
解题思路:当m=0时,B=A;当m≠0时,由B={2,3},可得=2或=3,解得m=3或m=2.综上可得,实数m=0或2或3,故选D.
二、填空题
10.已知集合A={x||x-1|<2},B={x|log2 x<2},则A∩B=________.
答案:{x|0
解题思路:将两集合化简得A={x|-1
11.(四川南充质检)同时满足M⊆{1,2,3,4,5};a∈M,则(6-a)M的非空集合M有________个.
答案:7命题立意:本题考查集合中元素的特性,难度中等.
解题思路: 非空集合M{1,2,3,4,5},且若aM,则必有6-aM,那么满足上述条件的集合M有{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.
12.设集合A=,B={y|y=x2},则A∩B等于______.
答案:{x|0≤x≤2}解题思路: A=={x|-2≤x≤2},B={y|y=x2}={y|y≥0}, A∩B={x|0≤x≤2}.
13.设A是整数集的一个非空子集,对于kA,如果k-1A且k+1A,那么称k是集合A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.
答案:6命题立意:本题主要考查集合的新定义,正确理解新定义,得出构成的不含“好元素”的集合均为3个元素紧邻的集合,是解决本题的关键.
解题思路:依题意可知,若由S的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.
14.已知集合A=,B={(x,y)|x2+(y-1)2≤m},若AB,则m的取值范围是________.
答案:[2,+∞)命题立意:本题主要考查线性规划知识,意在综合考查圆的方程、点和圆的位置关系以及数形结合思想.
解题思路:作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,,由AB得三角形所有点都在圆的内部,故≥,解得m≥2.
15.已知R是实数集,集合A={y|y=x2-2x+2,xR,-1≤x≤2},集合B=,任取xA,则xA∩B的概率等于________.
答案:命题立意:本题主要考查函数的图象与性质、不等式的解法、几何概型的意义等基础知识,意在考查考生的运算能力.
解题思路:依题意得,函数y=x2-2x+2=(x-1)2+1.当-1≤x≤2时,函数的值域是[1,5],即A=[1,5];由>1得>0,x4,即B=(-∞,3)(4,+∞),A∩B=[1,3)(4,5],因此所求的概率等于=.
16.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)M,存在(x2,y2)M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
M=; M={(x,y)|y=ex-2};
M={(x,y)|y=cos x}; M={(x,y)|y=ln x}.
其中是“垂直对点集”的序号是________.
答案:解题思路:对于,注意到x1x2+=0无实数解,因此不是“垂直对点集”;对于,注意到过原点任意作一条直线与曲线y=ex-2相交,过原点与该直线垂直的直线必与曲线y=ex-2相交,因此是“垂直对点集”;对于,与同理;对于,注意到对于点(1,0),不存在(x2,y2)M,使得1×x2+0×ln x2=0,因为x2=0与x2>0矛盾,因此不是“垂直对点集”.综上所述,故填.
B组
一、选择题
1.命题:x,yR,若xy=0,则x=0或y=0的逆否命题是()
A.x,yR,若x≠0或y≠0,则xy≠0
B.x,yR,若x≠0且y≠0,则xy≠0
C.x,yR,若x≠0或y≠0,则xy≠0
D.x,yR,若x≠0且y≠0,则xy≠0
答案:D命题立意:本题考查命题的四种形式,属于对基本概念层面的考查,难度较小.
解题思路:对于原命题:如果p,则q,将条件和结论既“换质”又“换位”得如果非q,则非p,这称为原命题的逆否命题.据此可得原命题的逆否命题为D选项.
易错点拨:本题有两处高频易错点,一是易错选B,忽视了“x,yR”是公共的前提条件;二是错选C,错因是没有将逻辑联结词“或”进行否定改为“且”.
2.已知命题p:“直线l平面α内的无数条直线”的充要条件是“lα”;命题q:若平面α平面β,直线aβ,则“aα”是“aβ”的充分不必要条件.则真命题是()
A.pq B.p绨q
C.绨p绨q D.绨pq
答案:D解题思路:由题意可知,p为假命题,q为真命题,因此绨pq为真命题,故选D.
3.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x0,使2x0<0.下列选项中为真命题的是()
A.绨p B.q
C.绨pq D.绨qp
答案:D命题立意:本题考查复合命题的真假性判定规则,难度中等.
解题思路:依题意,命题p是真命题,命题q是假命题,因此绨p是假命题,绨qp是真命题,绨pq是假命题,故选D.
4.已知命题p1:函数y=x--x在R上为减函数;p2:函数y=x+-x在R上为增函数.在命题q1:p1p2,q2:p1p2,q3:(绨p1)p2和q4:p1(绨p2)中,真命题是()
A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4
答案:C命题立意:本题考查含有逻辑联结词的命题的真假,难度中等.
解题思路:先判断命题p1,p2的真假,再判断复合命题的真假.因为函数y=x-2x是R上的减函数,所以命题p1是真命题;因为x=1和x=-1时,都有y=+2=,所以函数y=x+2x不是R上的增函数,故p2是假命题,所以p1p2是真命题,p1p2是假命题,(绨p1)p2是假命题,p1(绨p2)是真命题,所以真命题是q1,q4,故选C.
5.下列有关命题的说法正确的是()
A.命题“若x=y,则sin x=sin y”的逆否命题为真命题
B.函数f(x)=tan x的定义域为{x|x≠kπ,kZ}
C.命题“x∈R,使得x2+5x+1>0”的否定是:“x∈R,均有x2+5x+1<0”
D.“a=2”是“直线y=-ax+2与y=x-1垂直”的必要不充分条件
答案:A命题立意:本题考查常用逻辑用语的有关知识,难度较小.
解题思路:A正确,因为原命题为真,故其等价命题逆否命题为真;B错误,定义域应为;C错误,否定是:x∈R,均有x2+x+1≥0;D错误,因为两直线垂直充要条件为(-a)×=-1a=±2,故“a=2”是“直线y=-ax+2与y=x-1垂直”的充分不必要条件,故选A.
6.在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案:C命题立意:本题考查向量共线与充要条件的意义,难度中等.
解题思路:由λ∈R,使得=λ,=λ得ABCD,ADBC,四边形ABCD为平行四边形;反过来,由四边形ABCD为平行四边形得=1·,=1·.因此,在四边形ABCD中,“λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的充要条件,故选C.
7.下列说法错误的是()
A.命题“若x2-4x+3=0,则x=3”的逆否命题是“若x≠3,则x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要条件
C.若pq为假命题,则p,q均为假命题
D.命题p:“x∈R,使得x2+x+1<0”,则绨p:“x∈R,使得x2+x+1≥0”
答案:C命题立意:本题主要考查常用逻辑用语的相关知识,考查考生分析问题、解决问题的能力.
解题思路:根据逆命题的构成,选项A中的说法正确;x>1一定可得|x|>0,但反之不成立,故选项B中的说法正确;且命题只要p,q中一个为假即为假命题,故选C中的说法不正确;特称命题的否定是全称命题,选项D中的说法正确.
8.下列说法中不正确的个数是()
命题“x∈R,x3-x2+1≤0”的否定是“x0∈R,x-x+1>0”;
若“pq”为假命题,则p,q均为假命题;
“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件.
A.0 B.1 C.2 D.3
答案:B命题立意:本题主要考查简易逻辑知识,难度较小.
解题思路:对于,全称命题的否定是特称命题,故正确;对于,若pq为假,则p,q中至少有一个为假,不需要均为假,故不正确;对于,若a,b,c成等比数列,则b2=ac,当b<0时,b=-;若b=,有可能a=0,b=0,c=0,则a,b,c不成等比数列,故正确.综上,故选B.
知识拓展:在判定命题真假时,可以试图寻找反例,若能找到反例,则命题为假.
9.已知f(x)=3sin x-πx,命题p:x∈,f(x)<0,则()
A.p是真命题,绨p:x∈,f(x)>0
B.p是真命题,绨p:x0∈,f(x0)≥0
C.p是假命题,绨p:x∈,f(x)≥0
D.p是假命题,绨p:x0∈,f(x0)≥0
答案:B命题立意:本题主要考查函数的性质与命题的否定的意义等基础知识,意在考查考生的运算求解能力.
解题思路:依题意得,当x时,f′(x)=3cos x-π<3-π<0,函数f(x)是减函数,此时f(x)
10.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.既不充分也不必要的条件
答案:C解题思路:φ(a,b)=0,即=a+b,又a≥0,b≥0,所以a2+b2=(a+b)2,得ab=0;反之当ab=0时,必有φ(a,b)=-a-b=0,所以φ(a,b)=0是a与b互补的充要条件,故选C.
二、填空题
11.命题p:x∈R,使3cos2+sin cos
答案:(-,1]解题思路:3cos2+sin cos =+sin x=++sin x=+=+sin,故命题p正确的条件是+a>-,即a>-.
对于命题q,因为x>0,故不等式等价于a≤,因为x+≥2当且仅当x=,即x=1时取等号,所以不等式成立的条件是a≤1.
综上,命题pq为真,即p真q真时,a的取值范围是(-,1].
12.设等比数列{an}的前n项和为Sn,则“a1>0”是“S3>S2”的________条件.
答案:充要命题立意:本题考查了等比数列的公式应用及充要条件的判断,难度中等.
解题思路:若a1>0,则a3=a1q2>0,故有S3>S2.若S3>S2,则a3>0,即得a1q2>0,得a1>0, “a1>0”是“S3>S2”的充要条件.
13.已知c>0,且c≠1.设命题p:函数f(x)=logc x为减函数;命题q:当x时,函数g(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,则实数c的取值范围为________.
答案:(1,+∞)命题立意:本题主要考查命题真假的判断,在解答本题的过程中,要考虑有p真q假或p假q真两种情况.
解题思路:由f(x)=logc x为减函数得0恒成立,得2>,解得c>.如果p真q假,则01,所以实数c的取值范围为.
14.给出下列四个结论:
命题“x∈R,x2-x>0”的否定是“x∈R,x2-x≤0”;
函数f(x)=x-sin x(xR)有3个零点;
对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则xg′(x).
其中正确结论的序号是________.(请写出所有正确结论的序号)
答案:解题思路:显然正确;由y=x与y=sin x的图象可知,函数f(x)=x-sin x(xR)有1个零点,不正确;对于,由题设知f(x)为奇函数,g(x)为偶函数,又奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反, 当x0,g′(x)<0,
f′(x)>g′(x),正确.
15.(北京海淀测试)给出下列命题:
“α=β”是“tan α=tan β”的既不充分也不必要条件;
“p为真”是“p且q为真”的必要不充分条件;
“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充要条件.
其中真命题的序号是________.
答案:命题立意:本题考查充分条件、必要条件的判断,难度中等.
解题思路:对于,当α=β=时,不能推出tan α=tan β,反之也不成立,故成立;对于,易得“p为真”是“p且q为真”的必要不充分条件,故成立;对于,当数列{anan+1}是等比数列时不能得出数列{an}为等比数列,故成立;对于,“a=2”是“f(x)=|x-a|在[2,+∞)上为增函数”的充分不必要条件,故不成立.
2017年江苏高考数学第14题以及答案如下:
首先来看题目如下:
其次看分析以及涉及到的内容:
本题涉及到周期函数、区间、分段函数、集合以及对数函数和零点的相关知识点,难度比较大,需要对这几个知识点进行充分的理解才能够对题目进行解答,还有对函数图像的理解能力也有一定的要求,
最后看本题的解析答案:
点评:本题考查的知识点是根的存在性及根的简蚂个数判断,函数拦铅埋的图象和性质,转化思想,对学生每一个知识点的掌控都考的很充分,对图形的理解、零点个数的转换与方程之间的关系都需要用区间进行分析得出相关的结论,难度中激旅档以上.
以上就是2017高考试卷数学答案的全部内容,7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为___.答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=。