当前位置: 高中学习网 > 高中 > 高考

2017年高考数学3,2017年全国卷三数学理科

  • 高考
  • 2023-09-01

2017年高考数学3?ks5u2017年普通高等学校招生全国统一考试(全国卷3)理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,那么,2017年高考数学3?一起来了解一下吧。

2019年高考数学文科全国三卷

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选消历肢考题:共10分。

2017年高考全国三卷数学

1、2017年高考考试大纲数学科目选考内容确实删掉了一个。

2、2017高考数学在考试内容与范围方面,删去了选修4-1里的“几何证明选讲”。删去的理由是:几何证明选讲考察的是初中平面几何的知识,作为基础知识,可以在立体几何、解析几何知识中考察,不需要再单独设置专题考察,同时在以中姿游前的教学大纲和2017年修订的课程标准中都不包含。选考模块的试题由三道变为两道,可以说减轻了师生备考的负担,对于大多数学生来卖销讲,可以从原来面对平面几何题册信较为尴尬的境地解放了出来!可以更具有针对性的复习备考另外两个选考模块。

2017全国卷3数学

高中数学合集

pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

简介:高中肢游数学优质资料,包括:试题试卷、课羡返件、教兄饥饥材、、各大名师网校合集。

2017年浙江省高考数学试卷

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的烂高哪《高中数学课程标准》的要饥码求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。

高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运念姿算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

2017全国卷三数学答案

一、选择题

1.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()

A.|FP1|+|FP2|=|FP3|

B.|FP1|2+|FP2|2=|FP3|2

C.2|FP2|=|FP1|+|FP3|

D.|FP2|2=|FP1|·|FP3|

答案:C解题思路:抛物线的准线方程为x=-,由定义得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,则|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故选C.

2.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()

A.4B.2C.2D.

答案:C命题立意:本题考查直线与抛物线及圆的位置关系的应用,难度中等.

解题思路:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0,因为直线与抛物线相切,故Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2),因此过A,B两点最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.

3.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()

A.y2=9x B.y2=6x

C.y2=3x D.y2=x

答案:C命题立意:本题考查抛物线定义的应用及抛物线方程的求解,难度中等.

解题思路:如图,分别过点A,B作抛物线准线的垂线,垂足分别为E,D,由抛物线定义可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,则GF即为ACE的中位线,故|GF|=p==,因此抛物线方程为y2=2px=3x.

4.焦点在x轴上的双曲线C的左焦点为F,右顶点为A,若线段FA的中垂线与双曲线C有公共点,则双曲线C的离心率的取值范围是()

A.(1,3) B.(1,3]

C.(3,+∞) D.[3,+∞)

答案:D命题立意:本题主要考查双曲线的离心率问题,考查考生的化归与转化能力.

解题思路:设AF的中点C(xC,0),由题意xC≤-a,即≤-a,解得e=≥3,故选D.

5.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当AOB的面积取值时,直线l的搭肆斜率等于()

A. B.- C.± D.-

答案:B命题透析:本题考查直线与圆的位置关系以及数形结合的数学思想.

思路点拨:由y=,得x2+y2=1(y≥0),即该曲线表示圆心在原点,半径为1的上半圆,如图所示.

故SAOB=|OA||OB|·sin AOB=sin AOB,所以当sin AOB=1,即OAOB时,SAOB取得值,此时O到直线l的距离d=|OA|sin 45°=.设此时直线l的方程为y=k(x-),即kx-y-k=0,则有=,解得k=±,由图可知直线l的倾斜角为钝角,故k=-.

6.点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正知渗轿确的是()

A.直线l上的所有点都是“正点”

B.直线l上仅有有限个点是“正点”

C.直线l上的所有点都不是“正点”

喊或D.直线l上有无穷多个点(点不是所有的点)是“正点”

答案:A解题思路:本题考查直线与抛物线的定义.设A(m,n),P(x,x-1),则B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得关于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有实数解.

二、填空题

7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为________.

答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=,

|OA|2=x+y=;

同理|OB|2=.

故|OA|2·|OB|2=·=.

=≤(当且仅当k=±1时,取等号), |OA|2·|OB|2≥,

又b>a>0,

故SAOB=|OA|·|OB|的最小值为.

8.已知直线y=x与双曲线-=1交于A,B两点,P为双曲线上不同于A,B的点,当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=________.

答案:解题思路:设点A(x1,y1),B(x2,y2),P(x0,y0),则由得y2=,y1+y2=0,y1y2=-,

x1+x2=0,x1x2=-4×.

由kPA·kPB=·====知kPA·kPB为定值.

9.设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)D,则目标函数z=x+y的值为______.

答案:

3解题思路:本题考查双曲线、抛物线的性质以及线性规划.双曲线y2-=1的两条渐近线为y=±x,抛物线y2=-8x的准线为x=2,当直线y=-x+z过点A(2,1)时,zmax=3.

三、解答题

10.已知抛物线y2=4x,过点M(0,2)的直线与抛物线交于A,B两点,且直线与x轴交于点C.

(1)求证:|MA|,|MC|,|MB|成等比数列;

(2)设=α,=β,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.

解析:(1)证明:设直线的方程为:y=kx+2(k≠0),

联立方程可得得

k2x2+(4k-4)x+4=0.

设A(x1,y1),B(x2,y2),C,

则x1+x2=-,x1x2=,

|MA|·|MB|=|x1-0|·|x2-0|=,

而|MC|2=2=,

|MC|2=|MA|·|MB|≠0,

即|MA|,|MC|,|MB|成等比数列.

(2)由=α,=β,得

(x1,y1-2)=α,

(x2,y2-2)=β,

即得:α=,β=,

则α+β=,

由(1)中代入得α+β=-1,

故α+β为定值且定值为-1.

11.如图,在平面直角坐标系xOy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点,过R,P分别作直线l1,l2,使l1PF,l2l,l1∩l2=Q.

(1)求动点Q的轨迹C的方程;

(2)在直线l上任取一点M作曲线C的两条切线,设切点为A,B,求证:直线AB恒过一定点;

(3)对(2)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

解题思路:本题考查轨迹方程的求法及直线与抛物线的位置关系.(1)利用抛物线的定义即可求出抛物线的标准方程;(2)利用导数及方程根的思想得出两切点的直线方程,进一步求出直线恒过的定点;(3)分别利用坐标表示三条直线的斜率,从而化简证明即可.

解析:(1)依题意知,点R是线段PF的中点,且RQ⊥FP,

RQ是线段FP的垂直平分线. |QP|=|QF|.故动点Q的轨迹C是以F为焦点,l为准线的抛物线,其方程为:x2=4py(p>0).

(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).

由x2=4py得y=x2,求导得y′=x.

两条切线方程为y-y1=x1(x-x1),

y-y2=x2(x-x2),

对于方程,代入点M(m,-p)得,

-p-y1=x1(m-x1),又y1=x,

-p-x=x1(m-x1),

整理得x-2mx1-4p2=0.

同理对方程有x-2mx2-4p2=0,

即x1,x2为方程x2-2mx-4p2=0的两根.

x1+x2=2m,x1x2=-4p2.

设直线AB的斜率为k,k===(x1+x2),

所以直线的方程为y-=(x1+x2)(x-x1),展开得:

y=(x1+x2)x-,

将代入得:y=x+p.

直线恒过定点(0,p).

以上就是2017年高考数学3的全部内容,高考数学必考知识点归纳如下 1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。2、概率和统计,这部分和生活联系比较大,属应用题。3、考查圆锥曲线的定义和性质。

猜你喜欢