当前位置: 高中学习网 > 高中 > 高考

17年全国高考数学试题,2003年高考数学

  • 高考
  • 2023-10-08

17年全国高考数学试题?2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,那么,17年全国高考数学试题?一起来了解一下吧。

79年高考数学试题

试卷结构稳定,知识点广,重点突出,层次分明,逐步深入,使学生解题入手容易,心理状态平和,能正常发挥水平。试题难度和区分度都比较恰当,既有利于不同层次的高校选拔人才,又可以引导中学实施素质教育目标。今年的数学试题仍秉承“原创为主,改编为辅”的格调,知识点不超纲,原创题能围绕考生熟悉的情境来设置,改编题源于教材。试题启旁呈现方式常规却又不落俗套,配图清晰明了,既没有设置解题陷阱也不会产生阅读障碍,严格控制全卷的运算量,突出考查了考生的理性思维,强调了考生对数学本质的理解,体现多考一点想、少考一点算的高考命题导向。同时适当减少了含参试题的数量,旨在让大多数考生能够有时间做到每一道试题,也让优秀的考生能有更多的时间去攻克难题。黄智华觉得,今年高考数学题注重基础,突出主干。试题紧扣教材,学生做起来有一种亲近感,具有“上手容易”的特点,有利于考生发挥真实的水平。具体题型分析

●填空题第1—10题、解答题15、16题及附加题第21题的A、B、C、D 题都是容易题,考查基础知识、主干核心知识,考查的都是数学的基本概念、基本定理和常用公式,解决问题所用的方法都是教材中出现的,也是学生应该掌握的,解决问题的基本技能大部分学生都已经具备,而且运算量不大,学生适当进行运算就可以拿到这些基本分。

2017年高考数学全国2卷

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的烂高哪《高中数学课程标准》的要饥码求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。

高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运念姿算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

2019年数学高考题全国一卷

不知道你是文科还是理科,文理略有区别,理科考查题型及知识点如下:

一、选择题(12题,每题5分,共60分)

二、填空题(4题,每题5分,共20分)

小题考查知识点比较杂,但根据历年高考,大体考查知识点涵盖(根据题的难度,顺序可能有所调整):

1.考查复数的四则运算,通常为复数的除法;

例: 复数-1+3i/1+i=

A 2+IB2-I C 1+2iD 1- 2i

2.考查集合运算,即集合的交、并、补等;

例:已知集合A={1.3,根号m},B={1,m} ,A并B=A, 则m=

A 0或根号3B0或3C1或根号3 D1或3

还包括圆锥曲线部分1--2道:如求离心率等;

函数部分1--2道:如求函数值域、最值、极值、求某参数取值范围、求函数零点个数、两函数交点个数等;

数列部分1道;

平面向量1道;

三角函数1--2道;

二项式定理1道:通常求二项展开式中每一项的系数;

排列组合1道;

立体几何1--2道。

三、解答埋碰悔题(6道,共70分)大体题型及考查知识点较为固定。

17题:通常考查三角函数或者解三角形;

例:△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

18题:通常考查立体几何,包括证明异面直线位置关系、证明线面关系、求二面角、求图形中某椎体体积等;

19题:通常考查概率统计和分布列与期望;

例:乒乓球比赛规则规定:一局比赛,双方比分在10平前弯正,一方连续发球2次后,对方再连续发球2次,依次轮换。

16年高考数学全国一卷

一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合 A={x|1

A (1,4) B (3,4) C (1,3) D (1,2) (3,4)

2. 已知i是虚数单位,则 =

A 1-2i B 2-i C 2+i D 1+2i

3. 设aR ,则a=1是直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行 的

A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件

4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向凳庆左平移1个单位长度,再向下平移 1个单位长度,得到的图像是

5.设a,b是两个非零向量。

A.若|a+b|=|a|-|b|,则ab

B.若ab,则|a+b|=|a|-|b|

C.若|a+b|=|a|-|b|,则存在实数,使得b=a

D.若存在实数,使得b=a,则|a+b|=|a|-|b|

6.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有

A.60种 B.63种 C.6 5种 D.66种

7.设S。是公差为d(d0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是

A.若d0,则列数﹛Sn﹜ 有最大项

B.若数列﹛Sn﹜有最大项,则d0

C.若数列﹛Sn﹜

D.是递增数列,则对任意nNn,均有Sn0

8.如图,F1,F2分别是双曲线C: (a,b0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别教育P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是

A. B C.. D.

9.设a大于0,b大于0.

A.若2a+2a=2b+3b,则a B.若2a+2a=2b+3b,则ab

C.若2a-2a=2b-3b,则a D.若2a-2a=ab-3b,则a

10. 已知矩形ABCD,AB=1,BC= 。

1977年高考数学试卷

归纳总结高考概率大题的常见概率模型及求解策略能够帮助学生快速识别概率大题题型模式,并有针对性地选择解题方法,快速准确解决高考概率大题下面是我为你整理关于17年高考概率题解题技巧的内容,希望大家喜欢!

17年高考概率题解题技巧

(一)直接计算

在考试当中这属于比较简单的一类题目,直接计算就是将题干直接转述成公式来求解。我们举个例子:

【例1】从3双完全相同的鞋中,随机抽取一双鞋的概率是:( )

A.B.

C.D.

【答案】B

【解析】总的情况数为,再求出满足条件的情况数即可,抽取的两只鞋正好是一双,所以情况数为,所以所求的概率为。

(二)分类分步计算

所谓的分类计算指的是将满足条件的各种情况的概率加和运算;而分步计算指的是将满足条件的每个步骤概率作乘积运算。这与我们之前将到的排列组合中的2个原理:分类与分步是一致的。我们通过举例子来学习:

【例2】某高校从E、F和G三家公司购买同一设备的比例分别为20%,40%和40%,E、F和G三家公司所生产设备的合格率扰则分别为98%,98%和99%,现随机购买到一台次品设备的概率是:( )

A.0.013 B. 0.015

C.0.016 D. 0.01

【答案】C

【解析】次品可能是从E、F、G三家公司购买到的,这时候只要把三者的概率加起来即可:。

以上就是17年全国高考数学试题的全部内容,(2)求X的数学期望E(X)。20.(本题满分14分)如图,在四棱锥P-ABCD中,底面是边长为 的菱形,BAD=120,且PA平面ABCD,PA= ,M,N分别为PB,PD的中点。(1)证明:MN∥平民啊ABCD;(2)过点A作AQPC,垂足为点Q。

猜你喜欢