高考数学导数题?③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。高考数学导数主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,那么,高考数学导数题?一起来了解一下吧。
高中数学合集
pan.baidu/s/1znmI8mJTas01m1m03zCRfQ
1234
简介:高中肢游数学优质资料,包括:试题试卷、课羡返件、教兄饥饥材、、各大名师网校合集。
高友御考数学试题既是考查学生数学学习水平的有效手段,更是数学教学研究的重要资源,下面是我给大家带来的高考数学导数与排列知识点总结,希望对你有帮助。
高考数学导数知识点总结
导数是微积分的初步知识,是研究函数,解决实际问题的有力。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2.关于函数特征谈颂,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
好侍岩复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
方法凯世姿的核心就是先对函数两边取返此对数,然后两边求导,此时要注意等式左边的y的是函数而不是变量,求导时为复合函数求导,求完导数再把左边的y乘到盯绝右边,带入y关于x的表达式就得到了y对x的导数
高考数学导数解题技巧如下:
(1)利用导数研究切线问题
解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切余滑点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。
另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。
(2)利用导数研究函数的单调性
解题思路:求定义域——求导——讨论参数,判断单调性。
首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。
(3)利用导数研究函数的极值和最值
解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值
前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。
(4)利用导数研究不等式
解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等携毁运式
从这个解题思路可以看得出,导数不等式的本质是最值问题。
导数及其应用测试题
一、选择题:
1.曲线y=ex在点(1,e)处导数为()
(A)1 (B)e (C)-1(D)-e
2.曲线y=x3-2x+4在点此薯(1,3)处切线的倾斜角为()
(A)30°(B)45°
(C)60°(D)120°
3.函数f(x)的定义域为开区间(a,b),导函数f '(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()
(A)1个(B)2个 (C)3个 (D)4个
4.函数f(x)=xlnx的最小值是()
(A)e (B)-e (C)e-1 (D)-e-1
5.设f(x)、g(x)是定义域为R的恒大于零的可导函数,且f '(x)g(x)-f(x)g '(x)<0,则当a<x<b时,一定有
(A)f(x)g(x)>f(b)g(b) (B)f(x)g(a)>f(a)g(x)
(C)f(x)g(b)>f(b)g(x)(D)f(x)g(x)>f(a)g(a)
二.填空题
6.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=______.
7.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则函数f(x)在x=1处的导数f'(1)=______.
8.函数y=2x3-3x2-12x+5在[0,3]上的最大值是______;最小值是_______________.
9.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f '(x),若f '(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______.
10抛物线y=x2-x与x轴所围成封闭图形的面积为
三、解答题:
11.设函数f(x)=xekx(k≠0).
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.
12.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a,b的值;
(2)若对于任意的x∈[0,毁判3],都有f(x)<c2成立,求c的取值范围.
13.设a>0,函数 .
(1)当a=2时,求函数f(x)的单调区间;
(2)若不等式 对任意实数x恒成立,求森余者a的取值范围.
14.已知函数f(x)=ln(x+a)+x2.
(1)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(2)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于 .
一、选择题:
1.B2.B3.A4.D5.C
二、填空题:
6.17.-28.5;-159.y=-3x10.
三、解答题:
11.(1)f '(x)=(1+kx)ekx,令(1+kx)ekx=0,得 .
若k>0,则当 时,f '(x)<0,函数f(x)单调递减;当 时,f '(x)>0,函数f(x)单调递增.
若k<0,则当 时,f '(x)>0,函数f(x)单调递增;当 时,f '(x)<0,函数f(x)单调递减.
(2)若k>0,则当且仅当 ,即k≤1时,函数f(x)在区间(-1,1)内单调递增;若k<0,则当且仅当 ,即k≥-1时,函数f(x)在区间(-1,1)内单调递增.
综上,函数f(x)在区间(-1,1)内单调递增时,k的取值范围是[-1,0)∪(0,1].
12.解:(1)f '(x)=6x2+6ax+3b,
因为函数f(x)在x=1及x=2取得极值,则有f '(1)=0,f '(2)=0.
即 解得a=-3,b=4.
(2)由(1)可知,f(x)=2x3-9x2+12x+8c,
f '(x)=6x2-18x+12=6(x-1)(x-2).
当x∈(0,1)时,f '(x)>0;当x∈(1,2)时,f '(x)<0;当x∈(2,3)时,f '(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
因为对于任意的x∈[0,3],有f(x)<c2恒成立,
所以9+8c<c2,解得c<-1或c>9,
因此c的取值范围为(-∞,-1)∪(9,+∞).
13.解:对函数f(x)求导得:f '(x)=eax(ax+2)(x-1).
(1)当a=2时,f '(x)=e2x(2x+2)(x-1).
令f '(x)>0,解得x>1或x<-1;
令f '(x)<0,解得-1<x<1.
所以,f(x)单调增区间为(-∞,-1),(1,+∞);f(x)单调减区间为(-1,1).
(2)令f '(x)=0,即(ax+2)(x-1)=0,解得 ,或x=1.
由a>0时,列表分析得:
x
1 (1,+∞)
f'(x) + 0 - 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
当 时,因为 ,所以 ,从而f(x)>0.
对于 时,由表可知函数在x=1时取得最小值 ,
所以,当x∈R时, .
由题意,不等式 对x∈R恒成立,
所以得 ,解得0<a≤ln3.
14.(1)解:对函数f(x)求导数,得 .
依题意有f '(-1)=0,故 .
从而 .
f(x)的定义域为 ,当 时,f '(x)>0;
当 时,f '(x)<0;
当 时,f′(x)>0.
从而,f(x)分别在区间 内单调递增,在区间 内单调递减.
(2)解:f(x)的定义域为(-a,+∞), .
方程2x2+2ax+1=0的判别式 =4a2-8.
①若 <0,即 ,在f(x)的定义域内f '(x)>0,故f(x)无极值.
②若 =0,则 或
若
当 时,f '(x)=0,
当 或 时,f '(x)>0,所以f(x)无极值.
若 ,f '(x) >0,f(x)也无极值.
③若 >0,即 或 ,则2x2+2ax+1=0有两个不同的实数根
.
当 时,x1<-a,x2<-a,从而f′(x)在f(x)的定义域内没有零点,故f(x)无极值.
当 时,x1>-a,x2>-a,f '(x)在f(x)的定义域内有两个不同的零点,所以f(x)在x=x1,x=x2处取得极值.
综上,f(x)存在极值时,a的取值范围为 .
f(x)的极值之和为f(x1)+f(x2)=ln(x1+a)+x12+ln(x2+a)+x22
=ln[(x1+a)(x2+a)]+(x1+x2)2-2x1x2=ln +a2-1>1-ln2=ln .
以上就是高考数学导数题的全部内容,我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。掌握到一类题型的解题规律,其实很重要。