当前位置: 高中学习网 > 高中 > 高中数学

高一数学期末必考题型,高一数学期中考试试卷

  • 高中数学
  • 2023-11-23

高一数学期末必考题型?高一期末考试数学试题 一、选择题:(每小题5分,共60分)1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )A、x-2y+7=0 B、2x+y-1=0 C、x-2y-5=0 D、2x+y-5=0 2、如图,那么,高一数学期末必考题型?一起来了解一下吧。

高一数学重点题型及解析

数学测验

一、选择题(本大题共12个小题,每小题5分,共50分,)

1.sin2的值()

A.小于0 B.大于0C.等于0 D.不存在

2.已知 是角 终边上一点,且 ,则 = ( )

A 、 —10B、 C、D、

3.已知集合 , ,则 ()

A、 B、C、D、

4. ( )

A.B.C. D.

5.为了得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象()

A.向左平移5π12个长度单位B.向右平移5π12个长度单位

C.向左平移5π6个长度单位D.向右平移5π6个长度单位

6.已知 ,则 的值为( )

A.6 B.7C.8 D.9

7.三个数 , , 的大小关系是()

A. B.

C. D.

8.如果U是,M,P,S是U的三个子集,则

阴影部分所表示的集合为( )

A、(M∩P)∩S; B、(M∩P)∪S;

C、(M∩P)∩(CUS)D、(M∩P)∪(CUS)

9.方程sinπx=14x的解的个数是()

A.5 B.6C.7 D.8

10.如图函数f(x)=Asinωx(A>0,ω>0)一个周期的图象 ,

则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)的值等于()

A.2 B.22C.2+2D.22

二、填空题(本大题共4个小题,每小题5分,共25分,把正确答案填在题中横线上)

11.已知扇形的圆心角为72°,半径为20cm,则扇形的面积为________.

12.函数 的图象恒过定点 ,则 点坐标是 .

13.已知sinθ=1-a1+a,cosθ=3a-11+a,若θ为第二象限角,实数a的值为 ________.

14.若1+sin2θ=3sinθcosθ则tanθ=________.

15.定义在 上的函数 满足 且 时, ,则 _______________.

三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)

16.(本题满分10分) 求函数y=16-x2+sinx的定义域

17.(本题满分10分) 已知

(1)化简(2)若 是第三象限角,且 求 的值.

18、(本题满分13分)设函数 ,且 , .

(1)求 的值;(2)当 时,求 的最大值.

19.(本题满分14分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用 表示床价,用 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)

(1)把 表示成 的函数,并求出其定义域;

(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?

20.(本题满分14分)右图是函数f(x)=sin(ωx+φ)在某个周期上的图像,其中,试依图推出:(1)f(x)的最小正周期;(2)f(x)的单调递增区间;

(3)使f(x)取最小值的x的取值集合.(4)求f(x)的解析式

21.(本题满分14分) 函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).

(1)求g(a);(2)若g(a)=12,求a及此时f(x)的最大值.

可以留个其它联系方式,我直接传给你几份

高中数学选修

一.选择题:(每题4分,共40分)

1.一个直角三角形绕斜边旋转形成的空间几何体为()

A.一个圆锥B.一个圆锥和一个圆柱 C.两个圆锥 D.一个圆锥和一个圆台

2.设 ,,则 等于………………()

A. B.C. D.

3.下列命题中: ① 若A α, B α, 则AB α;② 若A α, A β, 则α、β一定相交于一条直线,设为m,且A m ③经过三个点有且只有一个平面④ 若a b, cb, 则a//c.正确命题的个数( )

A. 1B.2 C.3D.4

4.如图所示的直观图,其平面图形的面积是( )

A.4B.4C.2 D.8

5.若 ,则 =( )高考资源网

A.0B.1C.2 D.3

6.一个正方体的顶点都在球面上,它的棱长为 ,则球的半径是( )cm.

A.1 B.C.D.2

7.设偶函数f(x)的定义域为R,当x 时f(x)是增函数,则f(-2),f( ),f(-3)的大小关系是()

A.f( )>f(-3)>f(-2) B.f( )>f(-2)>f(-3)

C.f( )

8.下列命题中错误的是( )

A.如果 ,那么 内一定存在直线平行于平面

B.如果 ,那么 内所有直线都垂直于平面

C.如果平面 不垂直平面 ,那么 内一定不存在直线垂直于平面

D.如果 ,那么

9.三凌锥P-ABC的侧棱长相等,则点P在底面的射影O是△ABC的( )

A.内心 B.外心C.垂心D.重心

10.设函数 对任意 满足 ,且 ,则 =( )

A.-2B.C.D. 2

二、填空题(每小题4分,共16分)

11.用长、宽分别是3 和 的矩形硬纸卷成圆柱的侧面,则圆柱的底面半径是_______.

12.正方体 中, 分别是 的中点,则异面直线 所成角的大小为_________。

高中必修一数学期末考试试卷

一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)

1.不等式 的解集为 ▲ .

2.直线 : 的倾斜角为 ▲ .

3.在相距 千米的 两点处测量目标 ,若 , ,则 两点之间的距离是 ▲ 千米(结果保留根号).

4.圆 和圆 的位置关系是 ▲ .

5.等比数列 的公比为正数,已知 , ,则 ▲ .

6.已知圆 上两点 关于直线 对称,则圆 的半径为

▲ .

7.已知实数 满足条件 ,则 的值为 ▲ .

8.已知 , ,且 ,则 ▲ .

9.若数列 满足: , ( ),则 的通项公式为 ▲ .

10.已知函数 , ,则函数 的值域为

▲ .

11.已知函数 , ,若 且 ,则 的最小值为 ▲ .

12.等比数列 的公比 ,前 项的和为 .令 ,数列 的前 项和为 ,若 对 恒成立,则实数 的最小值为 ▲ .

13. 中,角A,B,C所对的边为 .若 ,则 的取值范围是

▲ .

14.实数 成等差数列,过点 作直线 的垂线,垂足为 .又已知点 ,则线段 长的取值范围是 ▲ .

二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)

15.(本题满分14分)

已知 的三个顶点的坐标为 .

(1)求边 上的高所在直线的方程;

(2)若直线 与 平行,且在 轴上的截距比在 轴上的截距大1,求直线 与两条坐标轴

围成的三角形的周长.

16.(本题满分14分)

在 中,角 所对的边分别为 ,且满足 .

(1)求角A的大小;

(2)若 , 的面积 ,求 的长.

17.(本题满分15分)

数列 的前 项和为 ,满足 .等比数列 满足: .

(1)求证:数列 为等差数列;

(2)若 ,求 .

18.(本题满分15分)

如图, 是长方形海域,其中 海里, 海里.现有一架飞机在该海域失事,两艘海事搜救船在 处同时出发,沿直线 、 向前联合搜索,且 (其中 、 分别在边 、 上),搜索区域为平面四边形 围成的海平面.设 ,搜索区域的面积为 .

(1)试建立 与 的关系式,并指出 的取值范围;

(2)求 的值,并指出此时 的值.19.(本题满分16分)

已知圆 和点 .

(1)过点M向圆O引切线,求切线的方程;

(2)求以点M为圆心,且被直线 截得的弦长为8的圆M的方程;

(3)设P为(2)中圆M上任意一点,过点P向圆O引切线,切点为Q,试探究:平面内是否存在一定点R,使得 为定值?若存在,请求出定点R的坐标,并指出相应的定值;若不存在,请说明理由.

20.(本题满分16分)

(1)公差大于0的等差数列 的前 项和为 , 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项, .

①求数列 的通项公式;

②令 ,若对一切 ,都有 ,求 的取值范围;

(2)是否存在各项都是正整数的无穷数列 ,使 对一切 都成立,若存在,请写出数列 的一个通项公式;若不存在,请说明理由.

扬州市2013—2014学年度第二学期期末调研测试试题

高 一 数 学 参 考 答 案 2014.6

1. 2. 3. 4.相交 5.1 6.3

7.11 8. 9. 10. 11.3 12. 13.

14.

15.解:(1) ,∴边 上的高所在直线的斜率为 …………3分

又∵直线过点 ∴直线的方程为: ,即 …7分

(2)设直线 的方程为: ,即 …10分

解得: ∴直线 的方程为: ……………12分

∴直线 过点 三角形斜边长为

∴直线 与坐标轴围成的直角三角形的周长为 . …………14分

注:设直线斜截式求解也可.

16.解:(1)由正弦定理可得: ,

即 ;∵ ∴ 且不为0

∴ ∵ ∴ ……………7分

(2)∵ ∴ ……………9分

由余弦定理得: , ……………11分

又∵ , ∴ ,解得: ………………14分17.解:(1)由已知得: , ………………2分

且 时,

经检验 亦满足 ∴ ………………5分

∴ 为常数

∴ 为等差数列,且通项公式为 ………………7分

(2)设等比数列 的公比为 ,则 ,

∴ ,则 , ∴ ……………9分

① ②得:

…13分

………………15分

18.解:(1)在 中, ,

在 中, ,

∴ …5分

其中 ,解得:

(注:观察图形的极端位置,计算出 的范围也可得分.)

∴ , ………………8分

(2)∵ ,

……………13分

当且仅当 时取等号,亦即 时,

答:当 时, 有值 . ……………15分

19.解:(1)若过点M的直线斜率不存在,直线方程为: ,为圆O的切线; …………1分

当切线l的斜率存在时,设直线方程为: ,即 ,

∴圆心O到切线的距离为: ,解得:

∴直线方程为: .

综上,切线的方程为: 或 ……………4分

(2)点 到直线 的距离为: ,

又∵圆被直线 截得的弦长为8 ∴ ……………7分

∴圆M的方程为: ……………8分

(3)假设存在定点R,使得 为定值,设 , ,

∵点P在圆M上 ∴ ,则 ……………10分

∵PQ为圆O的切线∴ ∴ ,即

整理得: (*)

若使(*)对任意 恒成立,则 ……………13分

∴ ,代入得:

整理得: ,解得: 或 ∴ 或

∴存在定点R ,此时 为定值 或定点R ,此时 为定值 .

………………16分

20.解:(1)①设等差数列 的公差为 .

∵ ∴ ∴

∵ 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项

∴ 即 ,∴

解得: 或

∵ ∴ ∴ , ………4分

②∵ ∴ ∴ ∴ ,整理得:

∵ ∴ ………7分

(2)假设存在各项都是正整数的无穷数列 ,使 对一切 都成立,则

∴ ,……, ,将 个不等式叠乘得:

∴ ( ) ………10分

若 ,则 ∴当 时, ,即

∵ ∴ ,令 ,所以

与 矛盾. ………13分

若 ,取 为 的整数部分,则当 时,

∴当 时, ,即

∵ ∴ ,令 ,所以

与 矛盾.

∴假设不成立,即不存在各项都是正整数的无穷数列 ,使 对一切 都成立. ………16分

高一数学知识点归纳大全

【 #高一#导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。高一频道为正在拼搏的你整理了《高一年级上学期数学期末考试试题》,希望对你有帮助!

【一】

第Ⅰ卷

一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合,则

(A)(B)(C)(D)

2.在空间内,可以确定一个平面的条件是

(A)三条直线,它们两两相交,但不交于同一点

(B)三条直线,其中的一条与另外两条直线分别相交

(C)三个点(D)两两相交的三条直线

3.已知集合{正方体},{长方体},{正四棱柱},{直平行六面体},则

(A)(B)

(C)(D)它们之间不都存在包含关系

4.已知直线经过点,,则该直线的倾斜角为

(A)(B)(C)(D)

5.函数的定义域为

(A)(B)(C)(D)

6.已知三点在同一直线上,则实数的值是

(A)(B)(C)(D)不确定

7.已知,且,则等于

(A)(B)(C)(D)

8.直线通过第二、三、四象限,则系数需满足条件

(A)(B)(C)同号(D)

9.函数与的图象如下左图,则函数的图象可能是

(A)经过定点的直线都可以用方程表示

(B)经过任意两个不同的点的直线都可以用方程

表示

(C)不经过原点的直线都可以用方程表示

(D)经过点的直线都可以用方程表示

11.已知正三棱锥中,,且两两垂直,则该三棱锥外接球的表面积为

(A)(B)

(C)(D)

12.如图,三棱柱中,是棱的中点,平面分此棱柱为上下两部分,则这上下两部分体积的比为

(A)(B)

(C)(D)

第Ⅱ卷

二.填空题:本大题共4小题,每小题5分,共20分.

13.比较大小:(在空格处填上“”或“”号).

14.设、是两条不同的直线,、是两个不同的平面.给出下列四个命题:

①若,,则;②若,,则;

③若//,//,则//;④若,则.

则正确的命题为.(填写命题的序号)

15.无论实数()取何值,直线恒过定点.

16.如图,网格纸上小正方形的边长为,用粗线画出了某多面体的三视图,则该多面体最长的棱长为.

三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分10分)

求函数,的值和最小值.

18.(本小题满分12分)

若非空集合,集合,且,求实数.的取值.

19.(本小题满分12分)

如图,中,分别为的中点,

用坐标法证明:

20.(本小题满分12分)

如图所示,已知空间四边形,分别是边的中点,分别是边上的点,且,

求证:

(Ⅰ)四边形为梯形;

(Ⅱ)直线交于一点.

21.(本小题满分12分)

如图,在四面体中,,⊥,且分别是的中点,

求证:

(Ⅰ)直线∥面;

(Ⅱ)面⊥面.

22.(本小题满分12分)

如图,直三棱柱中,,分别是,的中点.

(Ⅰ)证明:平面;

(Ⅱ)设,,求三棱锥的体积.

【答案】

一.选择题

DACBDBACABCB

二.填空题

13.14.②④15.16.

三.解答题

17.

解:设,因为,所以

则,当时,取最小值,当时,取值.

18.

解:

(1)当时,有,即;

(2)当时,有,即;

(3)当时,有,即.

19.

解:以为原点,为轴建立平面直角坐标系如图所示:

设,则,于是

所以

(Ⅱ)由(Ⅰ)可得相交于一点,因为面,面,

面面,所以,所以直线交于一点.

21.证明:(Ⅰ)分别是的中点,所以,又面,面,所以直线∥面;

(Ⅱ)⊥,所以⊥,又,所以⊥,且,所以⊥面,又面,所以面⊥面.

22.证明:(Ⅰ)连接交于,可得,又面,面,所以平面;

【二】

一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)

1.若直线x=1的倾斜角为α,则α=()

A.0°B.45°C.90°D.不存在

2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为

A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台

C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台

3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()

A.-1B.-2C.-3D.0

4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()

A.B.

C.D.

5.若直线与圆有公共点,则()

A.B.C.D.

6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()

A.-3B.1C.0或-D.1或-3

7.已知满足,则直线*定点()

A.B.C.D.

8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()

A.32B.24C.20D.16

9.过点且在两坐标轴上截距的绝对值相等的直线有()

A.1条B.2条C.3条D.4条

10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+),则旋转体的体积为()

A.2B.C.D.

11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()

A.B.C.D.

12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()

选择题答题卡

题号123456789101112

答案

二、填空题:(本大题共4小题,每小题4分,共16分。

高一数学期末考试范围

高一(上)数学期末考试试题(A卷)

班级

姓名

分数

一、

选择题(每小题只有一个答案正确,每小题3分,共36分)

1.已知集合M={

},集合N={

},则M

(

)。

(A){

}

(B){

}

(C){

}

(D)

2.如图,U是,M、P、S是U的三个子集,则阴影部分所表示的集合是(

(A)(M

(B)(M

(C)(M

P)

(CUS)

(D)(M

P)

(CUS)

3.若函数y=f(x)的定义域是[2,4],y=f(log

x)的定义域是(

(A)[

,1]

(B)[4,16]

(C)[

]

(D)[2,4]

4.下列函数中,值域是R+的是(

(A)y=

(B)y=2x+3

x

)

(C)y=x2+x+1

(D)y=

5.已知

的三个内角分别是A、B、C,B=60°是A、B、C的大小成等差数列的(

(A)充分非必要条件

(B)必要非充分条件

(C)充要条件

(D)既非充分也非必要条件

6.设偶函数f(x)的定义域为R,当x

时f(x)是增函数,则f(-2),f(

),f(-3)的大小关系是(

(A)f(

)>f(-3)>f(-2)

(B)f(

)>f(-2)>f(-3)

(C)f(

)

(D)f(

)

7.a=log0.70.8,b=log1.10.9,C=1.10.9,那么(

(A)a

(B)a

(C)b

(D)C

8.在等差数列{an}中,若a2+a6+a10+a14=20,

则a8=(

(A)10

(B)5

(C)2.5

(D)1.25

9.在正数等比数列{an}中,若a1+a2+a3=1,a7+a8+a9=4,则此等比数列的前15项的和为(

(A)31

(B)32

(C)30

(D)33

10.设数列{an}的前几项和Sn=n2+n+1,则数{an}是(

(A)等差数列

(B)等比数列

(C)从第二项起是等比数列

(D)从第二项起是等差数列

11.函数y=a-

的反函数是(

(A)y=(x-a)2-a

(x

a)

(B)y=(x-a)2+a

(x

a)

(C)y=(x-a)2-a

(x

)

(D)y=(x-a)2+a

(x

)

12.数列{an}的通项公式an=

,则其前n项和Sn=(

)。

以上就是高一数学期末必考题型的全部内容,高一(上)数学期末考试试题(A卷)班级 姓名 分数 一、选择题(每小题只有一个答案正确,每小题3分,共36分)1.已知集合M={ },集合N={ },则M ()。(A){ } (B){ } (C){ } (D)2.如图。

猜你喜欢