当前位置: 高中学习网 > 高中 > 高中数学

高中不等式经典题型,高中数学常数代换法求最值的步骤

  • 高中数学
  • 2024-05-20

高中不等式经典题型?1、作差∶作差后通过分解因式、配方等手段判断差的符号得出结果。2、作商(常用于分数指数幂的代数式)﹔分析法﹔平方法;分子(或分母)有理化;利用函数的单调性﹔寻找中间里或放缩法﹔)图象法。3、其中比较法(作差、作商)是最基本的方法。注意事项:一、符号:1、那么,高中不等式经典题型?一起来了解一下吧。

高一上常考的六种题型怎么记忆

均值不等式常见题型及解析如下:

一、若a,b,c是互不相等的实数,求证:a2+b2+c2>ab+bc+ac。证明:∵ a,b,c是互不相等的实数。∴ a2+b2>2ab, a2+c2>2ac, b2+c2>2bc。上面三个式子相加得 2a2+2b2+2c2>2ab+2bc+2ac。即a2+b2+c2>ab+bc+ac。

二、均值不等式基本性质

1、如果x>y,那么yy(对称性)。

2、如果x>y,y>z;那么x>z(传递性)。

3、如果x>y,而z为任意实数或整式,那么x+z>y+z(加法原则,或叫同向不等式可加性)。

4、如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

5、如果x>y,m>n,那么x+m>y+n(充分不必要条件)。

均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

常考结论及其公式的归纳与精讲

例4 解答题

(2)求不等式10(x+4)+x≤84的非负整数解.

分析:对(1)小题中要明白“不小于”即“大于或等于”,用符号表示即为“≥”;(2)小题非负整数,即指正数或零中的整数,所以此题的不等式的解必须是正整数或零.在求解过程中注意正确运用不等式性质.

解:

∴ 120-8x≥84-3(4x+1)

(2)∵10(x+4)+x≤84

∴10x+40+x≤84

∴11x≤44

∴x≤4

因为不大于4的非负整数有0,1,2,3,4五个,所以不等式10(x+4)+x≤84的非负整数解是4,3,2,1,0.

例5 解关于x的不等式

(1)ax+2≤bx-1 (2)m(m-x)>n(n-x)

分析:解字母系数的不等式与解数字系数不等式的方法、步骤都是类似的,只是在求解过程中常要对字母系数进行讨论,这就增加了题目的难度.此类问题主要考察了对问题的分析、分类的能力:它不但要知道什么时候该进行分类讨论,而且还要求能准确地分出类别来进行讨论(结合例题解法再给与说明).

解:(1)∵ax+2≤bx-1

∴ax-bx≤-1-2

即 (a-b)x≤-3

此时要依x字母系数的不同取值,分别求出不等式的解的形式.

即(n-m)x>n2-m2

当m>n时,n-m<0,∴x<n+m;

当m<n时,n-m>0,∴x>n+m;

当m=n时,n-m=0,n2=m2,n2-m2=0,原不等式无解.这是因为此时无论x取任何值时,不等式两边的值都为零,只能是相等的,所以不等式不成立.

例6 解关于x的不等式

3(a+1)x+3a≥2ax+3.

分析:由于x是未知数,所以把a看作已知数,又由于a可以是任意有理数,所以在应用同解原理时,要区别情况,分别处理.

解:去括号,得

3ax+3x+3a≥2ax+3

移项,得

3ax+3x-2ax≥3-3a

合并同类项,得

(a+3)x≥3-3a

(3)当a+3=0,即a=-3,得0·x≥12

这个不等式无解.

说明:在处理字母系数的不等式时,首先要弄清哪一个字母是未知数,而把其它字母看作已知数,在运用同解原理把未知数的系数化为1时,应作合理的分类,逐一讨论.

例7 m为何值时,关于x的方程3(2x-3m)-2(x+4m)=4(5-x)的解是非正数.

分析:根据题意,应先把m当作已知数解方程,然后根据解的条件列出关于m的不等式,再解这个不等式求出m的值或范围.注意:“非正数”是小于或等于零的数.

解:由已知方程有6x-9m-2x-8m=20-4x

可解得 8x=20+17m

已知方程的解是非正数,所以

例8 若关于x的方程5x-(4k-1)=7x+4k-3的解是:(1)非负数,(2)负数,试确定k的取值范围.

分析:要确定k的范围,应将k作为已知数看待,按解一元一次方程的步骤求得方程的解x(用k的代数式表示之).这时再根据题中已知方程的解是非负数或是负数得到关于k的不等式,求出k的取值范围.这里要强调的是本题不是直接去解不等式,而是依已知条件获得不等式,属于不等式的应用.

解:由已知方程有5x-4k+1=7x+4k-3

可解得 -2x=8k-4

即 x=2(1-2k)

(1)已知方程的解是非负数,所以

(2)已知方程的解是负数,所以

例9 当x在什么范围内取值时,代数式-3x+5的值:

(1)是负数 (2)大于-4

(3)小于-2x+3 (4)不大于4x-9

分析:解题的关键是把“是负数”,“大于”,“小于”,“不大于”等文字语言准确地翻译成数字符号.

解:(1)根据题意,应求不等式

-3x+5<0的解集

解这个不等式,得

(2)根据题意,应求不等式

-3x+5>-4的解集

解这个不等式,得

x<3

所以当x取小于3的值时,-3x+5的值大于-4.

(3)根据题意,应求不等式

-3x+5<-2x+3的解集

-3x+2x<3-5

-x<-2

x>2

所以当x取大于2的值时,-3x+5的值小于-2x+3.

(4)根据题意,应求不等式

-3x+5≤4x-9的解集

-3x-4x≤-9-5

-7x≤-14

x≥2

所以当x取大于或等于2的值时,-3x+5的值不大于4x-9.

例10

分析:

解不等式,求出x的范围.

解:

说明:应用不等式知识解决数学问题时,要弄清题意,分析问题中数量之间的关系,正确地表示出数学式子.如“不超过”即为“小于或等于”,“至少小2”,表示不仅少2,而且还可以少得比2更多.

例11 三个连续正整数的和不大于17,求这三个数.

分析:

解:设三个连续正整数为n-1,n,n+1

根据题意,列不等式,得

n-1+n+n+1≤17

所以有四组:1、2、3;2、3、4;3、4、5;4、5、6.

说明:解此类问题时解集的完整性不容忽视.如不等式x<3的正整数解是1、2,它的非负整数解是0、1、2.

例12 将18.4℃的冷水加入某种电热淋浴器内,现要求热水温度不超过40℃,如果淋浴器每分钟可把水温上升0.9℃,问通电最多多少分钟,水温才适宜?

分析:设通电最多x分钟,水温才适宜.则通电x分钟水温上升了0.9x℃,这时水温是(18.4+0.9x)℃,根据题意,应列出不等式18.4+0.9x≤40,解得,x≤24.

答案:通电最多24分,水温才适宜.

说明:解答此类问题时,对那些不确定的条件一定要充分考虑,并“翻译”成数学式子,以免得出失去实际意义或不全面的结论.

例13 矿山爆破时,为了确保安全,点燃引火线后,人要在爆破前转移到300米以外的安全地区.引火线燃烧的速度是0.8厘米/秒,人离开速度是5米/秒,问引火线至少需要多少厘米?

解:设引火线长为x厘米,

根据题意,列不等式,得

解之得,x≥48(厘米)

答:引火线至少需要48厘米.

*例14 解不等式|2x+1|<4.

解:把2x+1看成一个整体y,由于当-4<y<4时,有|y|<4,即-4<2x+1<4,

巧解一元一次不等式

怎样才能正确而迅速地解一元一次不等式?现结合实例介绍一些技巧,供参考.

1.巧用乘法

例1 解不等式0.25x>10.5.

分析 因为0.25×4=1,所以两边同乘以4要比两边同除以0.25来得简便.

解 两边同乘以4,得x>42.

2.巧用对消法

例2 解不等式

解 原不等式变为

3.巧用分数加减法法则

故 y<-1.

4.逆用分数加减法法则

解 原不等式化为

5.巧用分数基本性质

例5 解不等式

约去公因数2后,两边的分母相同;②两个常数项移项合并得整数.

例6 解不等式

分析 由分数基本性质,将分母化为整数和去分母一次到位可避免繁琐的运算.

解 原不等式为

整理,得8x-3-25x+4<12-10x,

思考:例5可这样解吗?请不妨试一试.

6.巧去括号

去括号一般是内到外,即按小、中、大括号的顺序进行,但有时反其道而行之即由外到内去括号往往能另辟捷径.

7.逆用乘法分配律

例8 解不等式

278(x-3)+351(6-2x)-463(3-x)>0.

分析 直接去括号较繁,注意到左边各项均含有因式x-3而逆用分配律可速解此题.

解 原不等式化为

(x-3)(278-351×2+463)>0,

即 39(x-3)>0,故x>3.

8.巧用整体合并

例9 解不等式

3{2x-1-[3(2x-1)+3]}>5.

解 视2x-1为一整体,去大、中括号,得3(2x-1)-9(2x-1)-9>5,整体合并,得-6(2x-1)>14,

9.巧拆项

例10 解不等式

分析 将-3拆为三个负1,再分别与另三项结合可巧解本题.

解 原不等式变形为

得x-1≥0,故x≥1.

练习题

解下列一元一次不等式

③3{3x+2-[2(3x+2)-1]}≥3x+1.

答案

回答者:匿名 7-31 09:24

高中数学常数代换法求最值

www.hengqian.com 有很多测试题、真题、模拟题,自己去找吧 http://www.cnmaths.com/xinkb/UploadFiles/200612/20061206170451175.rar 我用了十分钟查的一个网址你注册一下在用迅类下载就可以用了 结果就和以下 普通高中课程标准实验教科书—数学必修五[苏教版] §3.4.1第1 0课时 基本不等式的证明(1) 教学目标 (1)了解两个正数的算术平均数与几何平均数的概念,能推导并掌握基本不等式; (2)理解定理的几何意义,能够简单应用定理证明不等式。 教学重点,难点:基本不等式的证明及其简单应用。 教学过程 一.问题情境 1.情境:把一个物体放在天平的盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 ,如果天平制造得不精确,天平的两臂长略有不同(其他因素不计),那么 并非物体的重量。不过,我们可作第二次测量:把物体调换到天平的另一个盘子上,此时称得物体的质量为 。 2.问题:如何合理地表示物体的质量呢? 二.学生活动 引导学生作如下思考: (1)把两次称得的物体的质量“平均”一下: (2)根据力学原理:设天平的两臂长分别为 ,物体的质量为 ,则 ,① ,②,①,②相乘在除以 ,得 (3) 与 哪个大? 三.建构数学 1.算术平均数与几何平均数:设 为正数,则 称为 的算术平均数, 称为 的几何平均数。

高一不等式公式

1.不等式的基本性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性).

性质2:如果a>b,那么a+c>b+c(不等式的可加性).

性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.

性质5:如果a>b>0,c>d>0,那么ac>bd.

性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.

例1:判断下列命题的真假,并说明理由.

若a>b,c=d,则ac2>bd2;(假)

若,则a>b;(真)

若a>b且abb;(真)

若|a|b2;(充要条件)

命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.

a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)

说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.

例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.

说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.

练习:

1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)

2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)

3.判断下列命题的真假,并说明理由.

(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)

(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)

若a>b,c>d,则a-d>b-c.(真).

超神胡老师介绍

基本不等式题型及解题方法:解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。

(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。

(3)两边平方法:适用于两边非负的方程或不等式。

(4)几何意义法:适用于有明显几何意义的情况。

两大技巧

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

以上就是高中不等式经典题型的全部内容,(2)求不等式10(x+4)+x≤84的非负整数解.分析:对(1)小题中要明白“不小于”即“大于或等于”,用符号表示即为“≥”;(2)小题非负整数,即指正数或零中的整数。

猜你喜欢