高中必修五数学?tan(a-b)=(tana-tanb)/(1+tana*tanb) 2.高三年级数学必修五知识点 整群抽样整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。那么,高中必修五数学?一起来了解一下吧。
高中数学必修五知识点归纳是如下:
一、向量的基本概念
1、向量:既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。
2、平行向量:方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。
3、相等向量:长度相等且方向相同的向量叫做相等向量。
二、对于向量概念需注意
1、向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。
2、向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。
3、由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。
三、求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
^^数列抓住几点:一,通项,二,前n项和Sn(善于利用Sn+1=Sn+an和S1=a1),三,等差等比的几个公式(有百分之八十以上题目是根据这两种来的),四,多探索等差等比通项和首项,公差公比和通项等它们之间的关系,五,利用其它简便的方法,比如裂项,倒置等。数学这门课关键在于转化两字,把题目已知的条件转化成自己需要的解题的条件,没有什么是解不开的,好好学习,数学蛮有意思的,数列和排列组合是高中数学最有趣一部分。。
必修五,第一章是解三角形,主要学习正弦定理和余弦定理,不难;
第二章是数列,主要学习等差数列与等比数列,重点是4个公式,不难;
第三章是不等式,先学习不等式的性质,与初中所学差别不大,再学习一元二次不等式的解法(主要依靠二次函数图象)也不难,还有一个均值不等式(主要是条件的转化),有点难度但不大。
因此数学必修五不难,好好学,就一定能成功。
【 #高三#导语】仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。无须自卑,不要自负,坚持自信。高三频道为你整理了《高三年级数学必修五知识点》,欢迎阅读,祝愿天下所有的学子们都能取得的成绩!
1.高三年级数学必修五知识点
一、对数函数
log.a(MN)=logaM+logN
loga(M/N)=logaM-logaN
logaM^n=nlogaM(n=R)
logbN=logaN/logab(a>0,b>0,N>0a、b均不等于1)
二、简单几何体的面积与体积
S直棱柱侧=c*h(底面周长乘以高)
S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)
设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h
S圆柱侧=c*l
S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l
S圆锥侧=1/2*c*l=兀*r*l
S球=4*兀*R^3
V柱体=S*h
V锥体=(1/3)*S*h
V球=(4/3)*兀*R^3
三、两直线的位置关系及距离公式
(1)数轴上两点间的距离公式|AB|=|x2-x1|
(2)平面上两点A(x1,y1),(x2,y2)间的距离公式
|AB|=sqr[(x2-x1)^2+(y2-y1)^2]
(3)点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr
(A^2+B^2)
(4)两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-
C2|/sqr(A^2+B^2)
同角三角函数的基本关系及诱导公式
sin(2*k*兀+a)=sin(a)
cos(2*k*兀+a)=cosa
tan(2*兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其变形使用
1、二倍角公式
sin2a=2*sina*cosa
cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2
tan2a=(2*tana)/[1-(tana)^2]
2、二倍角公式的变形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sinA=b/sinB=c/sinC
余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
cosA=(b^2+c^2-a^2)/2bc
cosB=(a^2+c^2-b^2)/2ac
cosC=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
两角和与差的余弦公式
cos(a-b)=cosa*cosb+sina*sinb
cos(a-b)=cosa*cosb-sina*sinb
两角和与差的正弦公式
sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
两角和与差的正切公式
tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(a-b)=(tana-tanb)/(1+tana*tanb)
2.高三年级数学必修五知识点
整群抽样
整群抽样又称聚类抽样。
你好,我也是修过必修五这门课的数学,下面是等差和等比所有公式:
希望对你有帮助:
.
等差数列公式an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,
则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5) 等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q) ②当q=1时, Sn=n×a1(q=1)
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
祝你学习进步!但愿对你有所帮助!!!!
以上就是高中必修五数学的全部内容,函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。3.高三数学必修五知识点梳理 映射、函数、反函数 1、对应、映射、。