当前位置: 高中学习网 > 高中 > 高中数学

高一数学知识点总结,高一数学重点内容

  • 高中数学
  • 2023-11-25

高一数学知识点总结?学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、那么,高一数学知识点总结?一起来了解一下吧。

高一数学知识梳理

圆梦教育中心 高一数学知识总结

必修一 一、集合

一、集合有关概念 1. 集合的含义

2. 集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3. 集合的表示:{ „ } 如:{我校的篮球队员},{太平洋, 大西洋, 印度洋, 北

冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆ 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c„„}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方

法。{x∈R| x-3>2} ,{x| x-3>2}

3)语言描述法:例:{不是直角三角形的三角形} 4)Venn 图:

4、集合的分类:

(1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合

(3)空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系 1. “包含”关系—子集

注意:A ⊆B 有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

高中数学最难的三章

在学习过程中知识的总结往往很重要,那么高一数学知识点归纳有哪些呢?下面是由我为大家整理的“高一数学知识点总结归纳”,仅供参考,欢迎大家阅读。

高一数学知识点归纳总结

第一章:集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山;

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1.Com。

非负整数集(即自然数集)记作:N;

正整数集:N*或N+;

整数集:Z;

有理数集:Q;

实数集:R;

1)列举法:{a,b,c……};

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2};

3)语言描述法:例:{不是直角三角形的三角形};

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合;

(2)无限集含有无限个元素的集合;

(3)空集不含任何元素的集合例:{x|x2=-5}。

高一知识点归纳

高一数学知识点总结:

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

3.函数图像

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

高一数学知识点总结归纳

高一数学知识点总结:

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

数学

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

高数一知识点总结

很多同学在学习高一数学时,因为之前没有做过的总结,导致复习的效率不高。下面是由我为大家整理的“2022高一数学知识点总结大全(非常全面)”,仅供参考,欢迎大家阅读本文。

高一数学知识点重点总结归纳1

圆锥曲线性质:

一、圆锥曲线的定义

1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.

2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.

3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.

二、圆锥曲线的方程

1.椭圆:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)

2.双曲线:- =1(a>0,b>0)或- =1(a>0,b>0)(其中,c2=a2+b2)

3.抛物线:y2=±2px(p>0),x2=±2py(p>0)

三、圆锥曲线的性质

1.椭圆:+ =1(a>b>0)

(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)

2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x

3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1

高一数学知识点重点总结归纳2

集合与元素

一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

以上就是高一数学知识点总结的全部内容,高一数学知识点总结:1、函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x)。(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

猜你喜欢