当前位置: 高中学习网 > 高中 > 高中数学

高中数学必修二公式整理,高一下册数学知识点总结大全

  • 高中数学
  • 2023-10-22

高中数学必修二公式整理?(2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);(3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)(4)性质:①若m、n、p、q∈n,那么,高中数学必修二公式整理?一起来了解一下吧。

高一数学必修二册全部公式

1.高一必修二数学知识点整理

空间几何

一、立体几何常用公式

S(圆柱全面积)=2πr(r+L);

V(圆柱体积)=Sh;

S(圆锥全面积)=πr(r+L);

V(圆锥体积)=1/3Sh;

S(圆台全面积)=π(r^2+R^2+rL+RL);

V(圆台体积)=1/3[s+S+√(s+S)]h;

S(球面积)=4πR^2;

V(球体积)=4/3πR^3。

二、立体几何常用定理

(1)用一个平面去截一个球,截面是圆面。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。

(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。

(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。

2.高一必修二数学知识点整理

直线与平面有几种位置关系

直线与平面的关系有3种:直线在平面上,直线与平面相交迹闭,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。

高中数学必修一知识点归纳

三角函数公式表

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=激轮链sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(桐御3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=明孙cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———·cos———

2 2

α+β α-β

sinα-sinβ=2cos———·sin———

2 2

α+β α-β

cosα+cosβ=2cos———·cos———

2 2

α+β α-β

cosα-cosβ=-2sin———·sin———

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα ·sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

集合、函数

集合 简单逻辑

任一x∈A x∈B,记作A B

A B,B A A=B

A B={x|x∈A,且x∈B}

A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)

(1)命题

原命题 若p则q

逆命题 若q则p

否命题 若 p则 q

逆否命题 若 q,则 p

(2)四种命题的关系

(3)A B,A是B成立的充分条件

B A,A是B成立的必要条件

A B,A是B成立的充要条件

函数的性质 指数和对数

(1)定义域、值域、对应法则

(2)单调性

对于任意x1,x2∈D

若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数

若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数

(3)奇偶性

对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数

若f(-x)=-f(x),称f(x)是奇函数

(4)周期性

对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂

正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x<0,0<y<1

0<a<1时,x>0,0<y<1;x<0,y>1

a> 1时,y=ax是增函数

0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0<x<1,y<0

0<a<1时,x>1,y<0;0<x<1,y>0

a>1时,y=logax是增函数

0<a<1时,y=logax是减函数

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

数列

数列的基本概念 等差数列

(1)数列的通项公式an=f(n)

(2)数列的递推公式

(3)数列的通项公式与前n项和的关系

an+1-an=d

an=a1+(n-1)d

a,A,b成等差 2A=a+b

m+n=k+l am+an=ak+al

等比数列 常用求和公式

an=a1qn_1

a,G,b成等比 G2=ab

m+n=k+l aman=akal

不等式

不等式的基本性质 重要不等式

a>b b<a

a>b,b>c a>c

a>b a+c>b+c

a+b>c a>c-b

a>b,c>d a+c>b+d

a>b,c>0 ac>bc

a>b,c<0 ac<bc

a>b>0,c>d>0 ac<bd

a>b>0 dn>bn(n∈Z,n>1)

a>b>0 > (n∈Z,n>1)

(a-b)2≥0

a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|

证明不等式的基本方法

比较法

(1)要证明不等式a>b(或a<b),只需证明

a-b>0(或a-b<0=即可

(2)若b>0,要证a>b,只需证明 ,

要证a<b,只需证明

综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

高二数学几何公式

【 #高一#导语】高一阶段,是打基础阶段,是将来决战高考取胜的关键阶段,今早进入角色,安排好自己学习和生活,会起到事半功倍的效果。以下是为你加油!

1.高一年级数学必修二知识点整理

等比数列求和公式

(1)等比数列:a(n+1)/an=q(n∈n)。

(2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);

(3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)

(4)性质:

①若m、n、p、q∈n,且m+n=p+q,则am×an=ap×aq;

②在等比数列中,依次每k项之和仍成等比数列.

③若m、n、q∈n,且m+n=2q,则am×an=aq^2

(5)"g是a、b的等比中项""g^2=ab(g≠0)".

(6)在等比数列中,首项a1与公比q都不为零.注意:上述公式中an表示等比数列的第n项。

等比数列求和公式推导:sn=a1+a2+a3+...+an(公比为q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。

高一数学必修一总结笔记

学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是我为大家整理的高一数学必修2公式总结,希望对大家有所帮助!

高一数学必修2公式汇总:

立体几何基本课题包括:

- 面和线的重合

- 两面角和立体角

- 方块, 长方体, 平行六面体

- 四面体和其他棱锥

- 棱柱

- 八面体, 十二面体, 二十面体

- 圆锥,圆柱

- 球

- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面

公理

立体几何中有4个公理:

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2 过不在一条直线上的三点,有且只有一个平面.

公理3 如果两个不重合的平面有一个公共点,那么喊神它们有且只有一条过该点的公共直线.

公理4 平行于同一条直线的两条直线平行.

立方图形

立橡渗渣体几何公式

名称 符号 面积S 体积V

正方体 a——边长 S=6a^2 V=a^3

长方体 a——长 S=2(ab+ac+bc) V=abc

b——宽

c——高

棱柱 S——底面积 V=Sh

h——高

棱锥 S——底面积 V=Sh/3

h——高

棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱 r——底半径 C=2πr V=S底h=∏rh

h——高

C——底面周长

S底——底面积 S底=πR^2

S侧——侧面积 S侧=Ch

S表——表面积 S表=Ch+2S底

S底=πr^2

空心圆柱 R——外圆半径

r——内圆半径

h——高 V=πh(R^2-r^2)

直圆锥 r——底半径

h——高 V=πr^2h/3

圆台 r——上底半径

R——下底半径

h——高 V=πh(R^2+Rr+r^2)/3

球 r——半径

d——直径 V=4/3πr^3=πd^2/6

球缺 h——球缺高

r——球半径

a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

球台 r1和r2——球台上、下底半径

h——高 V=πh[3(r12+r22)+h2]/6

圆环体 R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4

桶状体 D——桶腹直径

d——桶底直径

h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分:

一 直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4 平面上的点的直角坐标

1.5 射影的基本原理

1.6 几个基本公式

二 曲线与议程

梁悄2.1 曲线的直解坐标方程的定义

2.2 已各曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

三 直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

四 圆

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

五 椭圆

5.1 椭圆的定义

5.2 用平面截直圆锥面可以得到椭圆

5.3 椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

六 双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5 等轴双曲线

6.6 共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

七 抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

八 坐标变换·二次曲线的一般理论

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4 圆锥曲线的更一般的标准方程

8.5 坐标轴的旋转

8.6 坐标变换的一般公式

8.7 曲线的分类

8.8 二次曲线在直角坐标变换下的不变量

8.9 二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

九 参数方程

十 极坐标

高中数学考试技巧

表面积:

圆柱:S=2πr²+2πrl=2πr(r+l)

圆锥:S=πr²+πrl=πr(r+l)

圆台:S=πr²颤蠢灶+πR²+½(2πr+2πR)*l

球:S=4πr²

(圆台的r表示上圆半径 R表示底面半径。l表示母线)

体积:

正方体、长方体、圆柱:V=Sh

圆锥:V=(3分之茄扮一)档腊Sh

圆台:V=(3分之一)*(S`+S`S开根号+S)h

球:V=(3分之4)πr³

以上就是高中数学必修二公式整理的全部内容,直线的方向向量m=(2,0,1),平面的法向量为n=(—1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0。也就是说,l和平面法向量垂直,那么l平行于平面。

猜你喜欢