高中数学重点?高中数学重点知识点总结大全归纳 1、基本初等函数 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、那么,高中数学重点?一起来了解一下吧。
高中数学有哪些知识点:
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:—个通项;─个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;—个是计算。
第五:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
在复习高中数学的过程中,很多同学没有对数学知识及时总结梳理记忆,导致复习效率不高。下面是由我为大家整理的“高中数学重点知识点总结大全归纳”,仅供参考,欢迎大家阅读本文。
高中数学重点知识点总结大全归纳
1、基本初等函数
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
2、同角三角函数间的平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、同角三角函数间积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
4、同角三角函数间倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
高中以来作为主科的数学越来越难,导致一部分同学们不知道如何复习,该注意的地方在那里。以下是由我为大家整理的“高中数学重点知识归纳总结”,仅供参考,欢迎大家阅读。
高中数学重点知识归纳总结
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .
8.充要条件
二、函 数
1.指数式、对数式,
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
本文将介绍高中数学中的一些重要知识点,帮助读者更好地掌握数学知识。
一元二次方程
的一般形式为ax²,bx,c@0,其中a≠0。解一元二次方程的方法有配方法、公式法、图像法等。
函数
是一种特殊的关系,它将一个自变量映射到一个因变量。函数的定义域、值域、单调性、奇偶性等是函数的重要性质。
导数
是函数在某一点处的变化率,也是函数的切线斜率。求导的方法有基本公式法、导数的四则运算法、复合函数求导法等。
三角函数
是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。三角函数的性质和图像是学习三角函数的重点。
数列
是按照一定规律排列的一组数,包括等差、等比、斐波那契等。数列的通项公式和求和公式是数列的重要性质。
在数学的学习以及做题方面,数学的重点知识点有哪些呢?高中数学有很多需要重要的知识点,那么我就将高中数学的重点知识点给大家整理一下。
高中数学正弦定理
概述
a/sinA=b/sinB=c/sinC=2R
正弦定理
(1)已知三角形的两角与一边,解三角形
(2)已知三角形的两边和其中一边所对的角,解三角形
(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系
直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。[1]
证明
步骤1
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。
高中数学三角函数公式大全
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)
sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)
正弦定理:在△ABC中,a / sinA = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。
以上就是高中数学重点的全部内容,第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、。