当前位置: 高中学习网 > 高中 > 高中数学

高中数学解析几何知识点总结,解析几何和平面几何区别

  • 高中数学
  • 2024-03-20

高中数学解析几何知识点总结?高中数学平面解析几何知识点 平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。那么,高中数学解析几何知识点总结?一起来了解一下吧。

解析几何知识框架

目录:

基础篇

第一讲 平面解析几何初步

1.1 直线与(直线的)方程

1.2 圆与(圆的)方程

1.3 空间直角坐标系

高考热点题型评析与探索

本讲测试题

第二讲 椭圆

2.1 椭圆

2.2 直线与椭圆的关系

高考热点题型评析与探索

本讲测试题

第三讲 抛物线

3.1 抛物线

3.2 直线与抛物线的关系

高考热点题型评析与探索

本讲测试题

第四讲 双曲线

4.1 双曲线

4.2 直线与双曲线的关系

高考热点题型评析与探索

本讲测试题

综合应用篇

解析几何的理论应用

一、集合问题

二、方程、不等式问题

三、最大(小)值、取值范围问题

四、函数问题

理论应用综合测试题

解析几何的实际应用

一、直线型应用题

二、圆型应用题

三、椭圆型应用题

四、抛物线型应用题

五、双曲线型应用题

实际应用综合测试题

资料来源:龙门专题 高中数学---解析几何

高考数学知识点梳理

解析几何是高中数学课程中的经典内容,而圆锥曲线更是高中数学平面解析几何中的重要曲线,下面我给大家分享一些数学圆锥曲线知识,希望能够帮助大家,欢迎阅读!

数学圆锥曲线知识

公式

抛物线:y = ax + bx + c

就是y等于ax 的平方加上 bx再加上 c

a >0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = ax+h + k

就是y等于a乘以x+h的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上焦点坐标为p/20 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆:体积=4/3pir^3

面积=pir^2

周长=2pir

圆的标准方程 x-a2+y-b2=r2 注:ab是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

数学圆锥曲线解题技巧

1充分利用几何图形

解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

高中解析几何学了哪些概念

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

(1)圆锥曲线 ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。

(2)曲线与方程 了解曲线与方程的对应关系,进一步感受数形结合的基本思想。

(3)椭圆、双曲线与抛物线理解三种曲线的标准方程,焦点,离心率,第二定义。

高数空间解析几何知识点总结

(一)椭圆及其标准方程

1. 椭圆的定义:椭圆的定义中,平面内动点与两定点F1、F2的距离的和大于|F1F2|这个条件不可忽视.若这个距离之和小于| F1F2|,则这样的点不存在;若距离之和等于

| F1F2|,则动点的轨迹是线段F1F2

2.椭圆的标准方程:x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0),y�0�5/a�0�5+x�0�5/b�0�5=1(a>b>0).

3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果x�0�5项的分母大于y�0�5项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.

4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

(二)椭圆的简单几何性质

1. 椭圆的几何性质:设椭圆方程为x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0).

⑴ 范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=±a和y=±b所围成的矩形里. ⑵ 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.

⑶ 顶点:有四个A1(-a,0)、A2(a,0)B1(0,-b)、B2(0,b).

线段A1A2,B1B2分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.

⑷ 离心率:椭圆的焦距与长轴长的比e=c/a叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.

2.椭圆的第二定义

⑴ 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数e=c/a(e<1时,这个动点的轨迹是椭圆.

⑵ 准线:根据椭圆的对称性,x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)的准线有两条,它们的方程为x=±(a�0�5/c).对于椭圆y�0�5/a�0�5+x�0�5/b�0�5=1(a>b>0)的准线方程,只要把x换成y就可以了,即y=

±(a�0�5/c).

3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.

设F1(-c,0),F2(c,0)分别为椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为|MF1|=a+ex,|MF2|=a+ex.

椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.

椭圆的四个主要元素a、b、c、e中有a�0�5=b�0�5+c�0�5,e=c/a两个关系,因此确定椭圆的标准方程只需两个独立条件.

4.椭圆的参数方程

椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)的参数方程为x=acosθ,y=bsinθ(θ为参数).

说明:⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:tanα=(b/a)tanθ;

⑵ 椭圆的参数方程可以由方程x�0�5/a�0�5+y�0�5/b�0�5=1与三角恒等式sin�0�5θ+cos�0�5θ=1相比较而得到,所以椭圆的参数方程的实质是三角代换.

5.椭圆的的内外部

(1)点P(x0,y0)在椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)的内部,得出x0�0�5/a�0�5+y0�0�5/b�0�5<1.

(2)点P(x0,y0)在椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)的外部,得出 x0�0�5/a�0�5+y0�0�5/b�0�5>1.

6. 椭圆的切线方程

(1)椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)上一点P(x0,y0)处的切线方程是(x0�6�1x)/a�0�5+(y0�6�1y)/b�0�5=1.

(2)过椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)外一点P(x0,y0)所引两条切线的切点弦方程是(x0�6�1x)/a�0�5+(y0�6�1y)/b�0�5=1.

(3)椭圆x�0�5/a�0�5+y�0�5/b�0�5=1(a>b>0)与直线Ax+By+C=0相切的条件是A�0�5a�0�5+B�0�5b�0�5=c�0�5

(三)双曲线及其标准方程

1.双曲线的定义:平面内与两个定点 、 的距离的差的绝对值等于常数2a(小于|F1F2|)的动点M的轨迹叫做双曲线.在这个定义中,要注意条件2a<|F1F2|,这一条件可以用“三角形的两

边之差小于第三边”加以理解.若2a=|F1F2|,则动点的轨迹是两条射线;若2a>|F1F2|,则无轨迹.若|MF1|<|MF2|时,动点M的轨迹仅为双曲线的一个分支,又若|MF1|>|MF2|时,轨迹为

双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.

2.双曲线的标准方程:x�0�5/a�0�5-y�0�5/b�0�5=1和y�0�5/a�0�5+x�0�5/b�0�5=1(a>0,b>0).这里b�0�5=c�0�5-a�0�5,其中|F1F2|=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.

3.双曲线的标准方程判别方法是:如果x�0�5项的系数是正数,则焦点在x轴上;如果 项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大

小来判断焦点在哪一条坐标轴上.

4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

(四)双曲线的简单几何性质

1.双曲线:x�0�5/a�0�5-y�0�5/b�0�5=1的实轴长为2a,虚轴长为2b,离心率e=c/a>1,离心率e越大,双曲线的开口越大.

2. 双曲线:x�0�5/a�0�5-y�0�5/b�0�5=1的渐近线方程为y=±(b/a)或表示为:x�0�5/a�0�5-y�0�5/b�0�5=0.若已知双曲线的渐近线方程是y=±(m/n)x,即mx±ny=0,那么双曲线的方程具有以下形式:m�0�5x�0�5-

n�0�5y�0�5=k,其中k是一个不为零的常数.

3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线:x�0�5/a�0�5-y�0�5/b�0�5=1,它的焦点坐标是(-c,0)

和(c,0),与它们对应的准线方程分别是x=-a�0�5/c和x=a�0�5/c.双曲线:x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)的焦半径公式|PF1|=|e(x+a�0�5/c)|,|PF2|=|e(-x+a�0�5/c)|.

4.双曲线的内外部

(1)点P(x0,y0)在双曲线x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)的内部,得出x0�0�5/a�0�5-y0�0�5/b�0�5<1.

(2)点P(x0,y0)在双曲线x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)的外部,得出x0�0�5/a�0�5-y0�0�5/b�0�5>1.

5.双曲线的方程与渐近线方程的关系

(1)若双曲线方程为x�0�5/a�0�5-y�0�5/b�0�5=1得出渐近线方程:x�0�5/a�0�5±y�0�5/b�0�5=0得出y=±(a/b)x.

(2)若渐近线方程为y=±(a/b)x,得出 x�0�5/a�0�5±y�0�5/b�0�5=0,双曲线可设为x�0�5/a�0�5-y�0�5/b�0�5=λ.

(3)若双曲线与x�0�5/a�0�5-y�0�5/b�0�5=1有公共渐近线,可设为x�0�5/a�0�5-y�0�5/b�0�5=λ(λ>0,焦点在x轴上,λ<0,焦点在y轴上).

6. 双曲线的切线方程

(1)双曲线x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)上一点P(x0,y0)处的切线方程是(x0�6�1x)/a�0�5-(y0�6�1y)/b�0�5=1.

(2)过双曲线x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)外一点P(x0,y0)所引两条切线的切点弦方程是(x0�6�1x)/a�0�5+(y0�6�1y)/b�0�5=1.

(3)双曲线x�0�5/a�0�5-y�0�5/b�0�5=1(a>0,b>0)与直线Ax+By+C=0相切的条件是A�0�5a�0�5-B�0�5b�0�5=c�0�5.

(五)抛物线的标准方程和几何性质

1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。

高中解析几何知识点归纳

高中数学中解析几何的知识点,越全越好 20分

有什么知识点?就那几条死记硬背的公式。记牢就行!身下的就是灵活运用,多练练题目!练到你一看到一个题目就知道思路,知识点和公式都是为这条思路铺路的。不要做题是还记不牢公式,那就枉费了青春!

解析几何的学科认识

中学的解析几何是在平面上来展开的,大学的解析几何是在空间展开的。有空间直线的方贰、空间平面的方程、空间曲面的方程等,曲面主要有抛物面、椭圆面、双曲面等。当然还有其他的曲面方程。

高考解析几何的考查重点在哪?

平面解析几何?高考有这个么…现在高考的大题难点一般就是下面几个:函式,圆锥曲线,数列,立体几何(找二面角的题特别难…)。其他的一些知识点都会穿 *** 这些题目中。希望能帮助到你,手机纯手打- -。

解析几何、数学分析、高等代数各需要高中时期的哪些课本中的什么基础知识

并不能这么理解的,三者与高中的知识大相径庭,特别是高等代数尤为抽象。若要说用与高中知识更为贴切的,那就是数学分析了。^_^希望得以采纳。

用空间解析几何的知识写高考大题能给分吗

各地高考历年录取分数线与报考指南

这里要特别提醒大家,高考填报志愿应该以这类书籍为主,一般学校都会发给考生的。

以上就是高中数学解析几何知识点总结的全部内容,公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。(1)判定直线在平面内的依据 (2)判定点在平面内的方法 公理2:如果两个平面有一个公共点,那它还有其它公共点。

猜你喜欢