必修二高中数学?在任一直线上任取一点,再转化为点到直线的距离进行求解. 高中必修二数学知识点2 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形. (2)棱锥 几何特征:侧面、那么,必修二高中数学?一起来了解一下吧。
相信很多的同学同学都是非常的关心高考数学有哪些必考的知识点的,下面我给大家分享一些高中数学必修二知识点总结,希望对大家有所帮助。
高中数学必修二知识点1
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台:
几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
3、空间几何体的直观图——斜二测画法
斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;
原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
高中数学必修二知识点2
直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
斜截式:,直线斜率为k,直线在y轴上的截距为b
两点式:()直线两点,
截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
()斜率为k的直线系:,直线过定点;
()过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
高中数学必修二知识点3
圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、高中数学必修二知识点总结:直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
5、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
符号语言:
公理2的作用:
它是判定两个平面相交的方法.
它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
它可以判断点在直线上,即证若干个点共线的重要依据.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
高中数学必修二知识点4
空间直线与直线之间的位置关系
异面直线定义:不同在任何一个平面内的两条直线
异面直线性质:既不平行,又不相交.
异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:aαa∩α=Aaα
(9)平面与平面之间的位置关系:平行——没有公共点;αβ
相交——有一条公共直线.α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行.线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.
线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.
平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.
(2)垂直关系的判定和性质定理
线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
4、空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为.
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.
平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高中数学必修二知识点5
解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
高中数学必修二知识点6
数列
(1)数列的概念和简单表示法
了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
了解数列是自变量为正整数的一类函数.
(2)等差数列、等比数列
理解等差数列、等比数列的概念.
掌握等差数列、等比数列的通项公式与前项和公式.
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
了解等差数列与一次函数、等比数列与指数函数的关系.
高中数学必修二知识点总结2022相关文章:
★高二数学会考知识点大全
★高中数学必背知识点
★高三数学重点知识点
★高中数学函数周期知识点总结最新
★2022高二数学知识点人教版
★高三数学复习计划范文2022十篇
★2022年高二数学教师工作总结
★2022高中数学教师工作总结范文10篇
★2022新学期高中数学教学计划5篇
★高二数学知识点笔记
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();高中数学必修二目录
一、立体几何
1. 空间几何的基本概念
2. 直线与平面
3. 多面体与旋转体及其性质
二、解析几何初步
1. 平面直角坐标系
2. 直线方程与性质
3. 圆的一般方程与性质
4. 圆锥曲线的基本特征
三、代数部分
数列与差分
数列的概念与分类
等差数列及其性质
等比数列及其性质
数列求和与极限概念引入
差分概念及其应用简介
数列的应用问题
四、三角学基础与初步应用
三角函数的基本概念
角的概念与弧度制
正弦函数、余弦函数、正切函数的概念与图像
三角函数的性质与诱导公式
三角函数的和差公式及其应用等。三角函数的实际应用及模型建立。正弦型函数的性质及应用。 三角恒等变换。解三角形。 五、概率初步六、数理统计初步随机抽样等知识点 。通过对生活现象中的数据归纳和总结得出简单统计结论来对社会生产生活起到良好的指导意义,总结各个数量间的相互作用及其统计规律性为相关统计部门的决策提供指导帮助。 注:详细目录会根据教材版本不同有所差异,请以实际教材为准。以上就是高中数学必修二的主要内容目录,每一章节都是数学学科的基础知识,需要同学们认真学习掌握。如需进一步了解某一章节的具体内容,可翻阅相关教材资料进行详细阅读。
高一高二高三数学是指《高中数学必修一》《高中数学必修二》《埋友脊高中数学必修三》《高中数学必修四》,具体如下:
《高中数学必修一》:是高中数学学习阶段顺序必修的第一本教学辅助资料。是2007年人民教育出版社出版的图书,作弯渗者是人民教育出版社课题材料研究告尺所、中学数学课程教材研究开发中心。
《高中数学必修二》,主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。是2007年9月由人民教育出版社出版的图书,作者是王申怀。
《高中数学必修三》:主要内容是对算法,统计,概率知识的讲解与总结。是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。
4、《高中数学必修四》:数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。
高中数学必修二知识点如下:
1、几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
2、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成。
3、正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
4、当直线的斜率为0°时,k=0,直线的方程是y=y1。
5、利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
高中必修二数学知识点总结
高中必修二数学有哪一些知识点呢?我们应该怎么进行总结呢?高中必修二数学知识点总结是我为大家整理的,在这里跟大家分享一下。
高中必修二数学知识点总结
1定理总结
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
2空间两直线的位置关系
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
以上就是必修二高中数学的全部内容,高中数学必修二知识点如下:1、几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。2、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成。3、。