当前位置: 高中学习网 > 高中 > 高中数学

高中数学向量公式,向量|a+b|等于什么

  • 高中数学
  • 2023-07-15

高中数学向量公式?1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。3、|a·b|≠|a|·|b| 4、那么,高中数学向量公式?一起来了解一下吧。

高中数学向量公式空间

1、向量参数方程式

向量参数方程式是高中数学学科中一个方程式,表达式为:OP=(1-t)OA+tOB。

2、向量加减:

A(X1,Y1) B(X2,Y2),则A + B=(X1+X2,Y1+Y2),A - B=(X1-X2,Y1-Y2)。

3、数乘向量:

结合律:λ(μa) = (λμ)a;

第一分闭御配律:(λ+μ)a=λa+μa;

第二分配律:λ(a+b)=λa+λb。

发展历史

向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚者乎里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则首态悉来得到。

“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。

以上内容参考:-向量

以上内容参考:-数乘向量

以上内容参考:-向量加减

以上内容参考:-向量参数方程式

高中向量必备公式

1、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•培答b=x•x'+y•y'。

向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

向量的数量积的性质

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

2、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。

高一下册向量公式

设a=(x,y),b=(x',y').

1、向量的加法

向量的加法满足平行四边形法则和三角形法则.

AB+BC=AC.

a+b=(x+x',y+y').

a+0=0+a=a.

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c).

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意.

当a=0时,对于任意实数λ,都有λa=0.

注:按定义知,如果λa=0,那么λ=0或a=0.

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为纯李腊原来的∣λ∣倍.

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb).

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:

① 如果实数λ≠0且λa=λb,那么a=b.

② 如果a≠0且λa=μa,那么λ=μ.

4、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.

向量的数量积的坐标表示:a·b=x·x'+y·y'.

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方.

a⊥b 〈=〉a·b=0.

|a·b|≤|a|·|b|.

向量的数量积与实数运算的主要不扰尘同点

1)向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.

2)向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.

3)|a·b|≠|a|·|b|

4)由 |a|=|b| ,推不出 a=b或a=-b

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:

∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a∥b〈=〉a×b=0.

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的.

扩展资料:

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。

高中数学平面向量公式

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:

=

(交换律);

+(

+c)=(

+

)+c

(结合律);

+0=

+(-

)=0.

1.实或铅数与向量的积:实数

与向量

的积是一个向量。

(1)|

|=|

|•|

|;

(2)

>0时,

的方向相同;当

<0时,

的方向相反;当

=0时,

=0.

(3)若

=(

),则

=(

).

两个向量共线的充要条件:

(1)

向量b与非零向量

共线的充要条件是有且仅有一个实数

,使得b=

(2)

=(

),b=(

)则

‖b

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量

,有且只有一对实数

,使得

=

e1+

e2.

2.P分有向线段

所成的比:

设P1、P2是直线

上两个点,点P是

上不同于P1、P2的任意一点,则存在一个实数

使

=

叫做点P分有向线段

所成的比。

当点迟搭P在线段

上时,

>0;当点P在线段

的延长线上时,

<0;

分点坐标公式:

3.

向量的数量积:

(1).向量的夹角:

(2).两个向量的数量积:

(3).向量的数量积的性质:

(4)

.向量的数量积的运算律:

4.主要思想与方法:

本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特衫旦好别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。

高中数学向量公式垂直

对的亮厅。向量的运算类似于代数的运算,也有完全平方公式,平方差公式,

(向量a+向量b)²=向量a²+2向量a*向量b+向量b²中,

向握含量a²=|a|²,向量b²=|b|²,向量a*向量b=|a|*|b|*cos

结果是数量。

如果要证明的话,就要利用向量的平敬皮隐行四边形法则。

以上就是高中数学向量公式的全部内容,向量加法的运算律:交换律:a+b=b+a。结合律:(a+b)+c=a+(b+c)。2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。AB-AC=CB.即“共同起点,指向被减”。

猜你喜欢