当前位置: 高中学习网 > 高中 > 高中数学

高中数学解三角形公式大全,高中数学sin公式表

  • 高中数学
  • 2023-09-21

高中数学解三角形公式大全?a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。变形公式 (1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA:sinB:sinC=a:b:c (3)asinB=bsinA,asinC=csinA,那么,高中数学解三角形公式大全?一起来了解一下吧。

三角函数公式汇总

差,和角公式;半,倍角公式;同角异名公式;和差化积,积化和差公悔则式;万毁亮能公式.另,基础的诱导公式.希望能帮到碧余棚你!欢迎追问!

高中数学sin公式表

一、正弦和咐定理

a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

变形公式

(1)a=2RsinA,b=2RsinB,c=2RsinC

(2)sinA:sinB:sinC=a:b:c

(3)asinB=bsinA,asinC=csinA,bsinC=csinB

(4)sinA=a/2R,sinB=b/2R,sinC=c/2R

二、余弦定理

a²=b²+c²-2bccosA

b²=a²+c²-2accosB

c²=a²+b²-2abcosC

注:勾股定碧棚基理其实是余弦定理的一种特殊情况。

扩展资料:

高中数学中解三角形的几种方法

1、转化与化归思想

转化与化归思想方法在研究、解决数学问题中,当思维受阻时考虑寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情境使问题得到悔谨解决,这种转化是解决问题的有效策略,同时也是成功的思维方式。

2、函数与方程思想

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

解三角形特殊公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A

=2Cos² A—1

=1—2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)³丛滚;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

半角公式

sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √姿竖{(1+cosA)/2}

tan(A/渗册余2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)} ?

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

常用角度的三角函数值表

高中数学是一个非常让人头痛的学科,但是还有有许多同学摆正态度积极学习,为了更好的帮助他们提高成绩。下面是由我为大家整理的“三角形余弦定理公式大全”,仅供参考,欢迎大家阅读。

三角形余弦定理公式大全

余弦定理(第二余弦定理)

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值

我本段

余弦定理性质

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质--

a^2 = b^2+ c^2 - 2·b·c·cosA

b^2 = a^2 + c^2 - 2·a·c·cosB

c^2 = a^2 + b^2 - 2·a·b·cosC

cosC = (a^2 + b^2 - c^2) / (2·a·b)

cosB = (a^2 + c^2 -b^2) / (2·a·c)

cosA = (c^2 + b^2 - a^2) / (2·b·c)

(物理力学方面的平行四边形定则中也会用到)

第一余弦定理(任意三角形射影定理)

设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。

高中数学解三角形知识点

解三角形:

一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三橡薯角形的元素。

已知三角形的几个元素求其他元素的过程叫做解三角渗如举形。

解三角形,常用到正弦定理和余弦定理和面积公式等。

常用定理:

正弦定理

a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

变形公式

(1)a=2RsinA,b=2RsinB,c=2RsinC

(2)sinA:sinB:sinC=a:b:c

(3)asinB=bsinA,asinC=csinA,bsinC=csinB

(4)sinA=a/2R,sinB=b/2R,sinC=c/2R

面积公式

(5)S=1/2bcsinA=1/2acsinB=1/2absinC

余弦定理

a²=b²+c²-2bccosA

b²=a²+c²-2accosB

c²=a²+b²-2abcosC

注:勾股定理其实是余弦定理的一种特殊情况。

变形公式

cosC=(a²+b²-c²)/2ab

cosB=(a²+c²-b²)/2ac

cosA=(c²+b²-a²)/2bc

海伦-秦九韶公式

p=(a+b+c)/2(公式里的p为半周长)

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=√[p(p-a)(p-b)(p-c)] 高中数学基本不用。

以上就是高中数学解三角形公式大全的全部内容,a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。变形公式 (1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA:sinB:sinC=a:b:c (3)asinB=bsinA,asinC=csinA。

猜你喜欢