当前位置: 高中学习网 > 高中 > 高中数学

高中数学等差数列公式,小学四年级等差数列求和公式大全

  • 高中数学
  • 2024-03-28

高中数学等差数列公式?等差数列公式是Sn=n(a1+an)/2,其中Sn表示等差数列的前n项和,a1表示等差数列的首项,an表示等差数列的第n项。下面将从推导公式、应用场景以及真实应用等方面,分别对等差数列公式进行详细描述。那么,高中数学等差数列公式?一起来了解一下吧。

高二数学等差数列公式

高中数学数列知识点总结

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是我为大家收集的高中数学数列知识点总结,欢迎大家分享!

高中数学数列知识点:

等差数列公式

等差数列的通项公式为:an=a1+(n-1)d

或an=am+(n-m)d

前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

若m+n=2p则:am+an=2ap

以上n均为正整数

文字翻译

第n项的值=首项+(项数-1)*公差

前n项的和=(首项+末项)*项数/2

公差=后项-前项

等比数列公式

等比数列求和公式

(1) 等比数列:a (n+1)/an=q (n∈N)。

(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

(4)性质:

①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

②在等比数列中,依次每 k项之和仍成等比数列.

③若m、n、q∈N,且m+n=2q,则am×an=aq^2

(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".

(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

高中数学18个求导公式

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。

(百度搜的)

等差数列公式口诀

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。

著名的数列

数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。

函数单调性知识点总结与例题

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示.

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式.

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

和=(首项+末项)*项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometric progression).这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列.(1)等比数列的通项公式是:An=A1*q^(n-1)

等比数列通式

若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点.(2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

等比数列求和公式

(前提:q≠ 1) 任意两项am,an的关系为an=am·q^(n-m);在运用等比数列的前n相和时,一定要注意讨论公比q是否为1.(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.等比中项定义:从第二项起,每一项(有穷数列和末项除外)都是它的前一项与后一项的等比中 项.等比中项公式:An/An-1=An+1/An或者(An-1)(An+1)=An^2 (5)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和.(6)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列 1.若A=a1+a2+……+an B=an+1+……+a2n C=a2n+1+……a3n 则,A、B、C构成新的等比数列,公比Q=q^n 2.若A=a1+a4+a7+……+a3n-2 B=a2+a5+a8+……+a3n-1 C=a3+a6+a9+……+a3n 则,A、B、C构成新的等比数列,公比Q=q编辑本段性质

(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; (2)在等比数列中,依次每 k项之和仍成等比数列.(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则 {a2n},{a3n}…是等比数列,公比为q1^2,q1^3… {can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2.(5)等比数列中,连续的,等长的,间隔相等的片段和为等比.(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数.(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) (8) 数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方.(9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列.编辑本段求通项公式的方法

(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an 构造等比数列a(n+1)+x=2(an+x) a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3 所以(a(n+1)+3)/(an+3)=2 ∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

等差数列求an的方法

等比数列公式:

1、定义式:

2、求和公式:

3、通项公式:

4、从等比数列的定义、通项公式、前n项和公式可以推出:

等差数列公式:

1、定义式

对于数列若满足:

则称该数列为等差数列。其中,公差d为一常数,n为正整数。

2、通项公式

an=a1+(n-1)*d。首项a1=1,公差d=2。

3、前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2

Sn=[n*(a1+an)]/2

Sn=d/2*n²+(a1-d/2)*n

扩展资料:

等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。

随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。

众所周知,按揭贷款(公积金贷款)中一般实行按月等额还本付息。下面就来寻求这一问题的解决办法。

若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元,设第 n 月还款后的本金为 an。

以上就是高中数学等差数列公式的全部内容,高中数列基本公式: 1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、。

猜你喜欢