当前位置: 高中学习网 > 高中 > 高中数学

高中数学三角恒等变换,三角恒等变换诱导公联系

  • 高中数学
  • 2023-07-15

高中数学三角恒等变换?三角恒等变换是《高中数学必修4》。《高中数学必修4》是2007年人民教育出版社出版图书,新课标教材,必修系列中第4本,普通高中课程标准实验教科书数学必修4 A版。数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。那么,高中数学三角恒等变换?一起来了解一下吧。

三角恒等变换公式总结

2a-b=2(a-b)+b

tan(a-b)=1/2,tan2(a-b)=2tan(a-b)/[1-tan^2(a-b)]=4/3

tan(吵纤逗2a-b)=[tan2(a-b)+tanb]/[1-tan2(a-b)tanb]=1

a,b属于(0,π),2a-b属于(-π,2π),因升卖此2a-b=π/4或5π/4

同上理易求tana=1/3,所以a属于(竖瞎0,π/2),b属于(π/2,π)

所以2a-b属于(-π,3π/2),所以2a-b=π/4

三角函数公式大全表

是。

根据查询学科网显示,三角恒等变换是高一上学期数学人教A版(2019)必修第一册中的内容,在第5章,章节名称是简单的三角恒等变换。

三角恒等变换就是利用两角和与差闷御的正弦、余弦、正切公式、倍半角公式等进行简单的恒等变换明昌,三角蚂槐岩恒等变换位于三角函数与数学变换的结合点上。

高中数学三角恒等变换知识点

两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

万能公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/猜销2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化陵兆猛尺桥和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数恒等变换

cos2α=(cosα)^2-(sinα)^2

sin2α=2sinαcosα

cos2α/[sin2α+(cosα)^2]

=[(cosα)^2-(sinα)^2]/[2sinαcosα+(cosα)^2] (分子或辩誉衫段分灶差母同除以(cosα)^2)

=[1-(tanα)^2]/[2tanα+1]

数学三角恒等变换公式

常见的三角恒等式戚棚

设A,B,C是三角形宽仔则的三个内角

tanA+tanB+tanC=tanAtanBtanC

cotAcotB+cotBcotC+cotCcotA=1

(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1

cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)

tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

sin2A+sin2B+sin2C=4sinAsinBsinC

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

二倍角公式

sin2A=2sinA•cosA

cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1

tan2A=(2tanA)/(1-tan^2A)

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

慎棚cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^2a-1)cosa-2(1-cos^a)cosa

=4cos^3a-3cosa

sin3a=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)^2-sin^2a]

=4sina(sin^260°-sin^2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cos^2a-cos^230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tanh(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

诱导公式

sin(-α) = -sinα

cos(-α) = cosα

tan (-α)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

其它公式

(1) (sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

以上就是高中数学三角恒等变换的全部内容,=1 ∴√3sina-cosa=1 又(sina)^2+(cosa)^2=1,且a是锐角 得sina=√3/2,cosa=1/2 a=60° (2)f(x)=cos2x+2sinx =1-2sin 2 x+2sinx =-2(sinx-1/2)2 +3/2 当sinx=1/2时。

猜你喜欢