高一数学期末试卷?高一数学期末考试试卷分析(一) 第一学期期末考试高一地理试卷的命题范围主要考查了人教版必修1的相关知识,试卷从面向学生的测试角度命题,覆盖的知识面较为合理,重视基础知识的考查,总体难度不大,但是比较灵活多变,区分度较好。那么,高一数学期末试卷?一起来了解一下吧。
【 #高一#导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。高一频道为正在拼搏的你整理了《高一年级上学期数学期末考试试题》,希望对你有帮助!
【一】
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,则
(A)(B)(C)(D)
2.在空间内,可以确定一个平面的条件是
(A)三条直线,它们两两相交,但不交于同一点
(B)三条直线,其中的一条与另外两条直线分别相交
(C)三个点(D)启此胡两两相交的三条直线
3.已知集合{正方体},{长方体},{正四棱柱},{直平行六面体},则
(A)(B)
(C)(D)它们之间不都存在包含关系
4.已知直线经过点,,则该直线的倾斜角为
(A)(B)(C)(D)
5.函数的定义域为
(A)(B)(C)(D)
6.已知三点在同一直线上,则实数的值是
(A)(B)(C)(D)不确定
7.已知,且,则等于
(A)(B)(C)(D)
8.直线通过第二、三、四象限,则系数需满足条件
(A)(B)(C)同号(D)
9.函数与的图象如下左图,则函数的图象可能是
(A)经过定点的直线都可以用方程表示
(B)经过任意两个不同的点的直线都可以用方程
表示
(C)不经过原点的直线都可以用方程表示
(D)经过点的直线都可以用方程表示
11.已知正三棱锥中,,且两两垂直,则该三棱锥外接球的表面积为
(A)(B)
(C)(D)
12.如图,三棱柱中,是棱的中点,平面分此棱柱为上下两部分,则这上下两部分体积的比为
(A)(B)
(C)(D)
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分,共20分.
13.比较大小:(在空格处填上“”或“”号).
14.设、是两条不同的直线,、是两个不同的平面.给出下列四个命题:
①若,,则;②若,,则;
③若//,//,则//;④若,则.
则正确的命题为.(填写命题的序号)
15.无论实数()取何值,直线恒过定点.
16.如图,网格纸上小正方形的边长为,用粗线画出了某多面体的三视图,则该多面体最长的棱长为.
三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
求函数,的值和最小值.
18.(本小题满分12分)
若非空集合,集合,且,求实数.的取值.
悄拦19.(本小题满分12分)
如图,中,分别为的中点,
用坐标法证明:
20.(本小题满分12分)
如图所示,已知空间四边形,分别是边的中点,分别是边上的点,且,
求证:
(Ⅰ)四边形为梯形;
(Ⅱ扒罩)直线交于一点.
21.(本小题满分12分)
如图,在四面体中,,⊥,且分别是的中点,
求证:
(Ⅰ)直线∥面;
(Ⅱ)面⊥面.
22.(本小题满分12分)
如图,直三棱柱中,,分别是,的中点.
(Ⅰ)证明:平面;
(Ⅱ)设,,求三棱锥的体积.
【答案】
一.选择题
DACBDBACABCB
二.填空题
13.14.②④15.16.
三.解答题
17.
解:设,因为,所以
则,当时,取最小值,当时,取值.
18.
解:
(1)当时,有,即;
(2)当时,有,即;
(3)当时,有,即.
19.
解:以为原点,为轴建立平面直角坐标系如图所示:
设,则,于是
所以
(Ⅱ)由(Ⅰ)可得相交于一点,因为面,面,
面面,所以,所以直线交于一点.
21.证明:(Ⅰ)分别是的中点,所以,又面,面,所以直线∥面;
(Ⅱ)⊥,所以⊥,又,所以⊥,且,所以⊥面,又面,所以面⊥面.
22.证明:(Ⅰ)连接交于,可得,又面,面,所以平面;
【二】
一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)
1.若直线x=1的倾斜角为α,则α=()
A.0°B.45°C.90°D.不存在
2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为
A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台
C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台
3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()
A.-1B.-2C.-3D.0
4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()
A.B.
C.D.
5.若直线与圆有公共点,则()
A.B.C.D.
6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()
A.-3B.1C.0或-D.1或-3
7.已知满足,则直线*定点()
A.B.C.D.
8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()
A.32B.24C.20D.16
9.过点且在两坐标轴上截距的绝对值相等的直线有()
A.1条B.2条C.3条D.4条
10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+),则旋转体的体积为()
A.2B.C.D.
11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()
A.B.C.D.
12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()
选择题答题卡
题号123456789101112
答案
二、填空题:(本大题共4小题,每小题4分,共16分。
高一期末考试数学试题
一、选择题:(每小题5分,共60分)
1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )
A、x-2y+7=0 B、2x+y-1=0
C、x-2y-5=0 D、2x+y-5=0
2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,
俯视图是一个滑搏此圆,那么这个几何体是( )、
A、棱柱 B、圆柱 C、圆台 D、圆锥
3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )
A、-3 B、2 C、-3或2 D、3或-2
4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )
A、相交 B、相离 C、内切 D、外切
5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )
A、5 B、6 C、 5 或6 D、 6或7
6、若 是等比数列, 前n项和 ,则 ( )
A、 B、
7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )
A、4 B、3
C、2 D、1
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
8、当a为任意实数时,直线(a-1)x-y+a+1=0恒银激过定点C,则以C为圆心,半径为5的圆的方程为( )
A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0
9、方程 表示的曲线是( )
A、一个圆 B、两个半圆 C、两个圆 D、半圆
10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )
A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形
11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )
A、1 B、 C、 D、
12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,
且018,则这两条直线之间的距离的最大值和最小值分别是( )、
A、 B、 C、 D、
第II卷(非选择题共90分)
二、填空题:(每小题5分,共20分)
13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______
14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _
15、 若实数 满足 的取值范围为
16、锐角三角形 中,若 ,则下列叙述正确的是
① ② ③ ④
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
三、解答题:(其中17小题10分,其它每小题12分,共70分)
17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、
18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=3,求△ABC面积的最大值、
19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
20、信迅 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
21、设数列 的前n项和为 ,若对于任意的正整数n都有 、
(1)设 ,求证:数列 是等比数列,并求出 的通项公式。
百度试题
【高一数学】y=-3sin2x 最大值 集合课本里
本题试卷
【高一数学】y=-3sin2x 最大值 集合课本里面是用 负二分之派加2k派来求得,可不可以用二分之三派+2kπ?我觉得可都一样呀,可是结果怎么不一样,
结果一样,只是结果表示的形式不一样哈.有两种表示形式:一、2x=-2分之π + 2kπ,即:x= - 4分之π + kπ;二、 2x=2分之3π + 2kπ,即:x=4分之3π + kπ,k属于Z其实:- 4分之π + kπ= 4分之3π - π + kπ=4分之3π + (k-1)π
VIP专享上亿试卷资源

更多本题试卷

高中数学必修四第一章《三角函数》学案 三角函数章节复习与小结(学生版)
127阅旅棚闷读

高一数学下学期期末试卷(含解析)(2021年整理)
112阅读

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的
117阅读

数学高一下期末复习题(2)
103阅读

高一数学三角函数综合试题答案及解析
189阅读

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(2)课时提升作业1 新人教A版必修
111阅读

人教版高中数学拆弯必修四常见公式及知识点总结(完整版)
253阅读
查看全部
题目
【高一数学】y=-3sin2x 最大值 集合课本里面是用 负二分之派加2k派来求得,可不可以用二分之三派+2kπ?我觉得可都一样呀,可是结果怎么不一样,
反馈
解析
解答
结果一样,只是结果表示的形式不一样哈.有两种表示形式:一、2x=-2分之π + 2kπ,即:x= - 4分之π + kπ;二、 2x=2分之3π + 2kπ,即:x=4分之3π + kπ,k属于Z其实:- 4分之π + kπ= 4分之3π - π + kπ=4分之3π + (k-1)π
来源于百度教育 由帕和闹***9进行上传 贡献内容
本文仅代表作者观点不代表百度立场,未经许可不得转载
你有期末优惠待领取
09:55:09
立即领取

反馈

收藏
2/3派加2k派与2k派加2/3派是没有区别的。
2/3派减2k派笑槐游与2k派减2/3派是有碰销区别的,它们相差一个负号明棚,互为相反数
第 1 页
第 1 页 共 4 页
高一下学期数学测试
一、选择题 1、已知sinx=54
-,且x在第三象限,则tanx= A.
4
3.43.34.3
4DCB
2. 己知向量)2,1(a,则||a A.5.5.5.5
DCB
3.)2,1(a,)2,1(b,则ba A.(-1,4) B、3 C、(0,4) D、
3
4.)2,1(a,)2,1(b,ba与所成的角为x则cosx=
A. 3 B.
53
C. 515 D.-5
15 5.在平行四边形ABCD中,以下错误的是 A、BDABADDDBABADCACABADBBC
AD...
6、把函数y=sin2x的图象向右平移6
个单位后,得到的函数解析式是( ) (A)y=sin(2x+
3) (B)y=sin(2x+6)(C)y=sin(2x-3) (D)y=sin(2x-6
) 7、sin5°sin25°-sin95°sin65°的值是( ) (A)
21 (B)-21 (C)23 (D)-2
3
8、函数y=tan(3
2
x)的单调递增区间是( ) (A)(2kπ-
32,2kπ+34) kZ (B)(2kπ-35,2kπ+3
) kZ
(C)(4kπ-32,4kπ+34) kZ (D)(kπ-35,kπ+3
) kZ
9、设0<α<β<2
,sinα=53,cos(α-β)=1312
,则sinβ的值为( )
(A)
65
16 (B)6533 (C)6556 (D)6563
2014高中期末考试题库 语文 数学 英语 物理 化学
第 2 页
第 2 页 共 4 页
10、△ABC中,已知tanA=31,tanB=2
1
,则∠C等于( )
(A)30° (B)45° (C)60° (D)135°
11、如果是第三象限的角,而且它满足2sin2cossin1,那么2
是( )
(A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
12、y=sin(2x+2
5
π)的图象的一条对称轴是( ) (A)x=-
2
(B)x=-4 (C)x=8 (D)x=45
13、已知0<θ<
4
,则2sin1等于( ) (A)cosθ-sinθ (B)sinθ-cosθ (C)2cosθ (D)2cosθ
14、函数y=3sin(2x+
3
)的图象可以看作是把函数y=3sin2x的图象作下列移动而 得到( )
(A)向左平移3单位 (B)向右平移3
单位 (C)向左平移
6单位 (D)向右平移6
单位 15、若sin2x>cos2x,则x的取值范围是( ) (A){x|2kπ-43π π,kZ} (C){x|kπ- 4 3 π,kZ} 二、填空题: 16、函数y=cos2x-8cosx的值域是 。 以上就是高一数学期末试卷的全部内容,本题试卷 【高一数学】y=-3sin2x 最大值 集合课本里面是用 负二分之派加2k派来求得,可不可以用二分之三派+2kπ?我觉得可都一样呀,可是结果怎么不一样,结果一样,只是结果表示的形式不一样哈.有两种表示形式:一、。