当前位置: 高中学习网 > 高中 > 高中数学

高中数学必修四向量,高中数学必修四课本电子版

  • 高中数学
  • 2023-07-20

高中数学必修四向量?高中数学向量是必修四,必修四先学习三角函数的定义,再学习平面向量,然后是三角变换的学习。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量。向量也称为欧几里得向量、几何向量、矢量,那么,高中数学必修四向量?一起来了解一下吧。

数学高一必修四向量知识点

因为,向量AB=向量AO+向量OB=向量OB-向量OA=向量a+向量3b,

向量AC=向量AO+向量OC=向量OC-向量OA=向量a/3+向量b,

向量AB=3向量AC,

∴向量AB、向量AC共线。

即有A,B,C三点共线。

高中数学必修四平面向量总结

人教版高中数学必修四主要内容是三角函数和向量,这两个项在高考数学中经常遇到,所以考生在学习的时候要认真学习,下面是我为大家整理的人教版高中数学必修四知识总结,仅供大家参考。

人教版高中数学必修四---三角函数

1.人教版高中数学正弦二倍角公式: sin2α = 2cosαsinα

推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA

拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2

2.人教版高中数学余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价。

(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]

(2)Cos2a=1-2Sina^2

(3)Cos2a=2Cosa^2-1

推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1 =1-2(sinA)^2

3.人教版高中数学正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]

推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]

降幂公式:cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2

变式: sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π; cos2α=2sinα+4πcosα+4π

4.人教版高中数学半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2;tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

5.人教版高中数学两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

6.人教版高中数学万能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

7.人教版高中数学其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

8.人教版高中数学三角函数口诀

三角函数是函数,象限符号坐标注。

高中必修四平面向量

向量共线嘛,就是其中一个可以表达为另外两个的线性组合的形式。

设OC=X*OA+Y*OB,分别把三个向量代入这个式子,如果所求XY的值存在,那就是共线了……

高中毕业好长时间了,记不太清,好像就是这样……仅供参考~

高中数学必修四向量教学

平面向量是高中数学中基本内容,必修四课本的难点,有哪些知识点需要学习?下面是我给大家带来的高中数学必修4平面向量知识点,希望对你有帮助。

高中数学必修4平面向量知识点

坐标表示法

平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。

来表示平面内的各个方向 在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用

向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.

向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.

方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.

长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.

向量的运算

1、向量的加法:

AB+BC=AC

设a=(x,y) b=(x',y')

则a+b=(x+x',y+y')

向量的加法满足平行四边形法则和三角形法则。

必修四数学向量

高中数学向量是必修四,必修四先学习三角函数的定义,再学习平面向量,然后是三角变换的学习。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量。

向量也称为欧几里得向量、几何向量、矢量,指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向,线段长度代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

以上就是高中数学必修四向量的全部内容,(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量 、 叫做平行向量,记作: ‖ ,规定零向量和任何向量平行。

猜你喜欢