当前位置: 高中学习网 > 高中 > 高中数学

高一集合知识点,高一数学集合常考题型

  • 高中数学
  • 2024-08-04

高一集合知识点?结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A? B那就说集合A是集合B的真子集,那么,高一集合知识点?一起来了解一下吧。

高中集合知识点归纳总结

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A。

3、集合的表示方法:列举法与描述法

①列举法:{a、b、c……}。

②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}。

例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}。

4、子集

A包含于B,有两种可能:

(1)A是B的一部分。

高中数学第一章集合

如下:

1、集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

2、集合中的元素具有确定性、互异性和无序性。

3、集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。

4、集合,在数学上是一个基础概念。基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

5、集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

性质

对任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A。

对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A。

对任意非空集合 A,空集是 A的真子集:∀A,若A≠Ø,则Ø 真包含于 A。

对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø。

对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø。

空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A。

高一数学集合知识点笔记

高一数学集合知识点归纳有:

1、某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A。

3、作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

4、对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

5、含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

高一数学笔记整理

【 #高一#导语】当一个小小的心念变成成为行为时,便能成了习惯;从而形成性格,而性格就决定你一生的成败。成功与不成功之间有时距离很短——只要后者再向前几步。 考 网高一频道为莘莘学子整理了《高一年级数学《集合》知识点总结》,希望对你有所帮助!

【一】

一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);

2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

3)交集:A∩B={xx∈A且x∈B}

4)并集:A∪B={xx∈A或x∈B}

5)补集:CUA={xxA但x∈U}

注意:①?A,若A≠?,则?A;

②若,,则;

③若且,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

高一函数20种题型及答案

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

①.元素的确定性; ②.元素的互异性; ③.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

以上就是高一集合知识点的全部内容,通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A。3、集合的表示方法:列举法与描述法。①列举法:{a、b、c……}。②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2}。

猜你喜欢