高一数学对数?对数是高一数学必修一学的。对数的运算法则:1、log(a) (M·N)=log(a) M+log(a) N 2、log(a) (M÷N)=log(a) M-log(a) N 3、log(a) M^n=nlog(a) M 4、log(a)b*log(b)a=1 5、那么,高一数学对数?一起来了解一下吧。
对数的运算公式:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算公式:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料:
对数的发展历史:
将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。
由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料
相关定义
如果
即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1、特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
2、称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
对于一般的logab ,其中a称为底数,b称为真数。
定义域:
底数和真数都必须大于零。例如 y=log2(小2)(x-3)定义域为x-3>0,即x>3
函数单调性:
对于对数函数y=logax,如果底数a>1,此函数在定义域内递增,如果底数a<1,此函数递减。
对数一般符号是log,例如log23 (2为底数,3为真数)
lg是特殊符号,表示以10为底数的对数,用lg表示时,因为底数已经确定为10,所以底数10就不用标示出来,例如:lg5 就表示10为底数,5为真数的对数,但是底数10不用标示出来。不同于log。
还有一个特殊对数符号是ln,表示以e为底数的对数,使用方法同lg,也不用将底数表示出来。例如ln 5 就表示e为底数,5为真数的对数。
运算法则:
lga+lgb=lg(ab)
lga-lgb=lg(a/b)
algb=lg(b^a)
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
扩展资料:
对数的历史:
16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。
恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。
一、对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
二、指数的运算法则:
1、[a^m]×[a^n]=a^(m+n)
2、[a^m]÷[a^n]=a^(m-n)
3、[a^m]^n=a^(mn)
4、[ab]^m=(a^m)×(a^m)
记忆口决:
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为 1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
扩展资料
指数的相关历史:
1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘之数曰幂。”这是第一次给幂这个概念下定义。
至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。
以上就是高一数学对数的全部内容,对于对数函数y=loga x,如果底数a>1,此函数在定义域内递增,如果底数a<1,此函数递减。对数一般符号是log,例如log2 3 (2为底数,3为真数)lg是特殊符号,表示以10为底数的对数,用lg表示时。