当前位置: 高中学习网 > 高中 > 高中数学

高二数学导数讲解,导数高中数学

  • 高中数学
  • 2023-07-29

高二数学导数讲解?导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。那么,高二数学导数讲解?一起来了解一下吧。

高中数学导数知识点归纳总结

导数作为研究函数的重要,也是进一步学习高二数学的基础,因此同学们需要掌握导数的重要知识点。下面我带来高二数学导数知识点,欢迎阅读!

高二数学导数知识点

1. 求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导, (1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数; (2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数; (3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单销轮调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围): 设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2) 如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3) 如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

减函数的导数一定小于等于0吗

导数基础

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产孙蔽衫生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在并脊,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

高中选修一数学电子书人教版

解:

令f'(x)=lnx-ax+x(1/x-a)=lnx-2ax+1=0;

在(1/e,e)内有两个实根,老梁故

a=(lnx+1)/(2x);

求a的值域:令t=lnx,则

-1

故a=(t+1)/(2e^t),

求a的单调区间,然后拿斗求值域,-1

得:

0

高二导数

导数是函数增量比的极限。增量比是函数值的增量与自变量增量的比值。当茄返搜函数在一点xo的某一邻域内,函数值的增量△y=f(x)-f(xo)与自复量的增量△x=x-xo的比值△y/△x,在△x→O时的极限lim△y/△x存在,我们就说函数在xo处可寻。函数f(x)在定义域内可导,f'(x)称为导函数,简称导世凳数。颤历

高中数学导数基础知识

【一】

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数简升谨;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一拦基个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

以上就是高二数学导数讲解的全部内容,利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

猜你喜欢