高一数学大题以及答案?解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.答案:118 高一数学指数与指数幂的计算题(二)1.下列各式正确的是()A.-32=-3 B.4a4=a C.22=2 D.a0=1 解析:选C.根据根式的性质可知C正确.4a4=|a|,a0=1条件为a≠0,那么,高一数学大题以及答案?一起来了解一下吧。
在高中数学实践中,指数与指数幂也是高中数学考试常考的内容,下面是我给高一学生带来的数学指数与指数幂的计算题及答案解析,希望对你有帮助。
高一数学指数与指数幂的计算题(一)
1.将532写为根式,则正确的是()
A.352B.35
C.532 D.53
解析:选D.532=53.
2.根式 1a1a(式中a>0)的分数指数幂形式为()
A.a-43 B.a43
C.a-34 D.a34
解析:选C.1a1a= a-1•a-112= a-32=(a-32)12=a-34.
3.a-b2+5a-b5的值是()
A.0 B.2(a-b)
C.0或2(a-b) D.a-b
解析:选C.当a-b≥0时,
原式=a-b+a-b=2(a-b);
当a-b<0时,原式=b-a+a-b=0.
4.计算:(π)0+2-2×(214)12=________.
解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.
答案:118
高一数学指数与指数幂的计算题(二)
1.下列各式正确的是()
A.-32=-3 B.4a4=a
C.22=2 D.a0=1
解析:选C.根据根式的性质可知C正确.
4a4=|a|,a0=1条件为a≠0,故A,B,D错.
2.若(x-5)0有意义,则x的取值范围是()
A.x>5 B.x=5
C.x<5 D.x≠5
解析:选D.∵(x-5)0有意义,
∴x-5≠0,即x≠5.
3.若xy≠0,那么等式 4x2y3=-2xyy成立的条件是()
A.x>0,y>0 B.x>0,y<0
C.x<0,y>0 D.x<0,y<0
解析:选C.由y可知y>0,又∵x2=|x|,
∴当x<0时,x2=-x.
4.计算2n+12•122n+14n•8-2(n∈N*)的结果为()
A.164 B.22n+5
C.2n2-2n+6 D.(12)2n-7
解析:选D.2n+12•122n+14n•8-2=22n+2•2-2n-122n•23-2=2122n-6=27-2n=(12)2n-7.
5.化简 23-610-43+22得()
A.3+2 B.2+3
C.1+22 D.1+23
解析:选A.原式= 23-610-42+1
= 23-622-42+22= 23-62-2
= 9+62+2=3+2.X k b 1 . c o m
6.设a12-a-12=m,则a2+1a=()
A.m2-2 B.2-m2
C.m2+2 D.m2
解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2⇒a2+1a=m2+2.
7.根式a-a化成分数指数幂是________.
解析:∵-a≥0,∴a≤0,
∴a-a=--a2-a=--a3=-(-a)32.
答案:-(-a)32
8.化简11+62+11-62=________.
解析: 11+62+11-62=3+22+3-22=3+2+(3-2)=6.
答案:6
9.化简(3+2)2010•(3-2)2011=________.
解析:(3+2)2010•(3-2)2011
=[(3+2)(3-2)]2010•(3-2)
=12010•(3-2)= 3-2.
答案:3-2
10.化简求值:
(1)0.064-13-(-18)0+1634+0.2512;
(2)a-1+b-1ab-1(a,b≠0).
解:(1)原式=(0.43)-13-1+(24)34+(0.52)12
=0.4-1-1+8+12
=52+7+12=10.
(2)原式=1a+1b1ab=a+bab1ab=a+b.
11.已知x+y=12,xy=9,且x
解:x12-y12x12+y12=x+y-2xy12x-y.
∵x+y=12,xy=9,
则有(x-y)2=(x+y)2-4xy=108.
又x
代入原式可得结果为-33.
12.已知a2n=2+1,求a3n+a-3nan+a-n的值.
解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1
=t+t-1t2-1+t-2t+t-1=t2-1+t-2
=2+1-1+12+1=22-1.
高一数学知识点
幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
1.已知a为实数,求函数f(x)=a/(1-x²)²+1+x² 的最大值
解:很明显,f(x)是偶函数。定义域:x≠±1;
f(0)=a+1;当a>0时,x→±1limf(x)=+∞;当a<0时,x→±1limf(x)=-∞;
不论a>0,还是a<0,都有x→±∞f(x)=+∞.
因此当a>0时该函数有最小值,没有最大值;当a<0时,该函数既无最大值,也无最小值,但有
极值。
令f′(x)=4ax(1-x²)/(1-x²)⁴+2x=4ax/(1-x²)³+2x=0,4ax+2x(1-x²)³=2x[2a+(1-x²)³]=0,于是得驻点:x₁=0;由2a+(1-x²)³=0,1-x²=(-a)^(1/3),x²=1+(a)^(1/3),得驻点x₂=√[1+(a)^(1/3)];
x₃=-√[1+(a)^(1/3)].
当a>0时x₁=0是极小点;当a<0时,x₁=0是极大点;极小值或极大值都是f(0)=a+1.
对其它两个极值点,我们只讨论a>0的情况(因为前面已分析,a<0时它们不是极值点,是拐点.)
当a<0时,x₂和x₃都是极小点。
minf(x)=f(x₂)=f(x₃)=a^(-1/3)+a^(1/3)+2.
2.过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程。
已知实数 ,求函数 的零点。16.(本题满分12分)已知函数 .(Ⅰ)求 的定义域;(Ⅱ)证实:函数 在定义域内单调递增.17.(本题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件. 假如降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值 (单位:元, )的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(Ⅰ)将一个星期的商品销售利润表示成 的函数;(Ⅱ)如何定价才能使一个星期的商品销售利润最大?18.(本题满分14分)若函数y= x3- ax2 (a-1)x 1在区间(1,4)内为减函数,在区间(6, ∞)内为增函数,试求实数a的取值范围.19.(本题满分14分)两个二次函数 与 的图象有唯一的公共点 ,(Ⅰ)求 的值;(Ⅱ)设 ,若 在 上是单调函数,求 的范围,并指出是单调递增函数,还是单调递减函数。20.(本题满分14分)设函数y= 是定义在R上的函数,并且满足下面三个条件: ①对任意正数x、y,都有; ②当x>1时, <0; ③ .(Ⅰ)求 的值;(Ⅱ)证实 上是减函数;(Ⅲ)假如不等式 成立,求x的取值范围。 15.(本题满分12分)解: , 可能等于1或 或 。
18.(1)分子分母同除以cosα,(tanα+2)/(5-tanα)=(-1/3+2)/(5+1/3)=5/16,
(2)1/cos²α=1+tan²α=1+1/9=10/9,分子分母同除以cos²α,(1/cos²α)/(2tanα+1)=(10/9)/(-2/3+1)=10/3;
21(1).a●b=|a|●|b|cos60°=3,(2)a²-b²=4-9=-5,(3)(2a+b)(a+3b)=2a²+3b²+7ab=8+27+21=56,(4)|a+b|=√(a²+2ab+b²)=√19。
第01题 阿基米德分牛问题
太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数
是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?
第02题 德·梅齐里亚克的法码问题
一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?
第03题 牛顿的草地与母牛问题
a头母牛将b块地上的牧草在c天内吃完了;
a&#39;头母牛将b&#39;块地上的牧草在c&#39;天内吃完了;
a"头母牛将b"块地上的牧草在c"天内吃完了;
求出从a到c"9个数量之间的关系?
第04题 贝韦克的七个7的问题
在下面除法例题中,被除数被除数除尽:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?
第05题 柯克曼的女学生问题
某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每
个女生同其他每个女生同一行中散步,并恰好每周一次?
第06题 伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters
求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
以上就是高一数学大题以及答案的全部内容,5.已知向量a=(1/√2,-2),向量b=[sin(π/4+2x),cos2x](x∈R).设函数f(x)=向量a•向量b。(1)求f(-π/4)的值;(2)求f(x)的最大值及对应的x的值(原题可能有错,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。