当前位置: 高中学习网 > 高中 > 高中数学

高中数学公式三角函数,高中数学三角函数知识点总结

  • 高中数学
  • 2025-01-03

高中数学公式三角函数?1-sin(a) = [sin(a/2)-cos(a/2)]^2;;其他非重点三角函数 csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,那么,高中数学公式三角函数?一起来了解一下吧。

三角函数等式关系公式

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx

(6)

sin(π/2-x)=cosx

cos(π/2-x)=sinx

tan(π/2-x)=cotx

两角公式

(1)两角和差公式

sin(x+y)=sinxcosy+sinycosx

sin(x-y)=sinxcosy-sinycosx

cos(x+y)=cosxcosy-sinxsiny

cos(x-y)=cosxcosy+sinxsiny

tan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtany

tan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany

(2)二倍角公式

sin2x=2sinxcosx

推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosx

cos2x=(cosx)2-(sinx)2=2cos2x-1=1-2sin2x (sin2x+cos2x=1)

推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos2x-sin2x

tan2x=sin2x/cos2x=2sinxcosx/cos2x-sin2x=2tanx/1-tan2x

三倍角公式

sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin2x)+(1-2sin2x)sinx=3sinx-4sin3x

cos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos2x-1)cosx-2cosx(1-cos2x)=4cos3x-3cosx

tan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)

三角函数求导公式

(sinx)=cosx

(cosx)=-sinx

(tanx)=sec2x=1+tan2x

(cotx)=-csc2x

(secx) =tanx·secx

(cscx) =-cotx·cscx.

(tanx)=(sinx/cosx)=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2

高中数学知识点

锐角三角函数公式

sin α=∠α的对边 / 斜边

cos α=∠α的邻边 / 斜边

tan α=∠α的对边 / ∠α的邻边

cot α=∠α的邻边 / ∠α的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(√3/2)2-sin2a]

=4sina(sin260°-sin2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(√3/2)2]

=4cosa(cos2a-cos230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα

高中数学公式总结大全

三角函数诱导公式:

1、基本公式一:任意角α与-α的三角函数值之间的关系:

- sin(-α)= -sinα

- cos(-α)= cosα

- tan(-α)= -tanα

- cot(-α)= -cotα

2、基本公式二:sin(π+α)与α的三角函数值之间的关系:

- sin(π+α)= -sinα

- cos(π+α)= -cosα

- tan(π+α)= tanα

- cot(π+α)= cotα

3、基本公式三:π-α与α的三角函数值之间的关系:

- sin(π-α)= sinα

- cos(π-α)= -cosα

- tan(π-α)= -tanα

- cot(π-α)= -cotα

4、基本公式四:2π-α与α的三角函数值之间的关系:

- sin(2π-α)= -sinα

- cos(2π-α)= cosα

- tan(2π-α)= -tanα

- cot(2π-α)= -cotα

5、基本公式五:π/2±α与α的三角函数值之间的关系:

- sin(π/2+α)= cosα

- cos(π/2+α)= -sinα

- tan(π/2+α)= -cotα

- cot(π/2+α)= -tanα

- sin(π/2-α)= cosα

- cos(π/2-α)= sinα

- tan(π/2-α)= cotα

- cot(π/2-α)= tanα

与三角函数相关的公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

高等数学常用三角函数公式

公式一:同角关系

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(kπ+α)=-sinα k∈z

cos(kπ+α)=-cosα k∈z

tan(kπ+α)=tanα k∈z

cot(kπ+α)=cotα k∈z

公式三: 任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六: π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

诱导公式记忆口诀:“奇变偶不变,符号看象限”。

以上就是高中数学公式三角函数的全部内容,1、基本公式一:任意角α与-α的三角函数值之间的关系:- sin(-α)= -sinα - cos(-α)= cosα - tan(-α)= -tanα - cot(-α)= -cotα 2、。

猜你喜欢