当前位置: 高中学习网 > 高中 > 高中数学

数学家高斯的成就,简述高斯的数学贡献

  • 高中数学
  • 2023-08-24

数学家高斯的成就?高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,那么,数学家高斯的成就?一起来了解一下吧。

陈景润证明1+1=2

高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的“从一加到一百”,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。

数学家高斯的一生

还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。

高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。

1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为“代数基本定理”。

事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。

1807年高斯开始在哥廷根大学任数学和天文学教授,并任该校天文台台长。高斯在许多领域都有卓越的建树。如果说微分几何是他将数学应用于实际的产物,那么非欧几何则是他的纯扰闷者粹数学思维的缓薯结晶。

数学家高斯的小故事

高斯可以说是天才数学王子,出正桐锋生贫穷的他小小年纪一下就能帮助父亲看账本,任何的数学理论拿到举晌他手上以下轮塌就能理解并能给出证明。

十大著名数学公式

高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算链链术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。

高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

天赋异禀:

当高斯12岁时,已棚弊孙经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。

于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。

数学家高斯介绍

在德国流传着一个关于天才男孩的故事,传说一个三岁的小孩帮助他的父亲纠正了借款账目中的错误。这位天才男孩就是后来有“数学王子”之称的高斯。

高斯是数学史上一个转折时期的重要代表人物,他的许多研究成果都具有划时代的意义。

1777年4月30日,高斯生于德国不伦瑞克悄基的一个工匠家庭,幼时家扮旦贫,受人资助才进入学校读书。16岁时进入哥廷根大学学习,后转入黑尔姆施泰特大学,1799年获得博士学位。从1807年起担任哥廷根大学教授兼哥廷根天文台台长直至逝世。

被称为天才数学家的高斯,在很小的时候就展现出了极高的数学天赋。上小学的时候,他用很短的时间计算出了对自然数从1到100的求和。他所使用的方法是:对50对构造成和为101的数的求和。同时得到结果:5050。如果说这仅仅是小技巧的话,那么在他16岁的时候预测到了非欧氏几何的必然产生,并且还推导出了二项式定理的一般形式,并发展了数学分析的理论,就不得不承认他天才的智慧了。

在进入哥廷根大学的同年,高斯发现了质数分布定理和最小二乘法。接着他又转入曲面与曲线的计算,并成功得到高斯钟形曲线,这一曲线在概率计算中大量使用。次年,年仅17岁的他首次用尺规构造出了规则的17角形,为欧氏几何自古希腊以来做了首次重要的补充。

以上就是数学家高斯的成就的全部内容,高斯在数学上的成就十分广泛,在微分几何、非欧几何、超几何级数、数论以及椭圆函数论等方面均有开创性贡献,并且在天文学、大地测量学和磁学的研究中引入数学方法,取得巨大的成就。1855年2月23日,79岁的高斯在哥廷根逝世。

猜你喜欢