高中数学概率知识点?(2)必然事件:在一定条件下,一定会发生的事件。 (3)不可能事件:在一定条件下,一定不会发生的事件 (4)确定事件:必然事件和不可能事件统称为确定事件。(5)随机事件:在一定条件下,可能发生也可能不发生的事件。那么,高中数学概率知识点?一起来了解一下吧。
高中数学概率计算法则主要为概率的加法法则。
概率的加法法则为:
推论1:设A1、 A2、?、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +?+ P(An)
推论2:设A1、 A2、?、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:若B包含A,则P(B-A)= P(B)-P(A)
推论4(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)
扩展资料:
高中数学概率计算法则还有条件概率的计算:
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)
全概率公式
设:若事件A1,A2,?,An互不相容,且A1+A2+?+An=Ω,则称A1,A2,?,An构成一个完备事件组。
高中概率知识点整理有如下:
一、算法初步。
1、算法的含义、程序框图。
通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
2、基本算法语句。
经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
3、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
二、概率。
1、在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
2、通过实例,了解两个互斥事件的概率加法公式。
3、通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
4、了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
5、通过阅读材料,了解人类认识随机现象的过程。
高中数学知识点全总结 : 1、数列或者三角函数;2、立体几何;3、概率统计;4、圆锥曲线;5、导数;6、选修题(参数方程和不等式)。
1、三角函数
对于三角函数的考法共有两种。分别是解三角形和三角函数本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用。
2、概率统计
以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法。
3、立体几何
这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角。
4、数列
数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度。
5、圆锥曲线
一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的。
古典概型是解决实际生活中概率问题的一个重要,也是高中数学新课标中的一个重要内容,学生需要掌握相关知识点,下面是我给大家带来的高一数学古典概型知识点,希望对你有帮助。
高一数学必修3古典概型知识点
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是
如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式
求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高一数学必修3几何概型知识点
几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。
高中数学概率知识点的学习方法有很多,以下是一些常见的方法:
1.了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3.会用抽机抽样,抽样,分层抽样等常用的抽样方法从总体中抽取样本。
4.理解超几何分布及其导出过程,并能进行简单的应用。
5.了解条件概率和两个事件相互独立的概念。
以上就是高中数学概率知识点的全部内容,高中概率知识点整理有如下:一、算法初步。1、算法的含义、程序框图。通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。通过模仿、操作、探索。