8.在等差数列{an}中,若a2+a6+a10+a14=20,
则a8=(
)
(A)10
(B)5
(C)2.5
(D)1.25
9.在正数等比数列{an}中,若a1+a2+a3=1,a7+a8+a9=4,则此等比数列的前15项的和为(
)
(A)31
(B)32
(C)30
(D)33
10.设数列{an}的前几项和Sn=n2+n+1,则数{an}是(
)
(A)等差数列
(B)等比数列
(C)从第二项起是等比数列
(D)从第二项起是等差数列
11.函数y=a-
的反函数是(
)
(A)y=(x-a)2-a
(x
a)
(B)y=(x-a)2+a
(x
a)
(C)y=(x-a)2-a
(x
)
(D)y=(x-a)2+a
(x
)
12.数列{an}的通项公式an=
,则其前n项和Sn=(
)。
高一数学上册期末模拟题
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
试题
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2B.23C.1D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数B.最小正周期为的偶函数
C.最小正周期为的奇函数D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()
A.π4B.π2C.π3D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不可能是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2B.3C.4D.6
第Ⅱ卷(非选择题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
15.已知,则的值
16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).
①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、
三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)
17.(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.
(Ⅰ)求1+sin2α1+cos2α的值;
(Ⅱ)求cos∠COB的值.
19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的值.
20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间-π2,-π12上的值和最小值.
21.(本小题满分12分)已知向量的夹角为.
(1)求;(2)若,求的值.
22.(本小题满分12分)已知向量).
函数
(1)求的对称轴。
高一数学必修一期末考试题及答案
【 #高一#导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。高一频道为正在拼搏的你整理了《高一年级上学期数学期末考试试题》,希望对你有帮助!
【一】
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,则
(A)(B)(C)(D)
2.在空间内,可以确定一个平面的条件是
(A)三条直线,它们两两相交,但不交于同一点
(B)三条直线,其中的一条与另外两条直线分别相交
(C)三个点(D)两两相交的三条直线
3.已知集合{正方体},{长方体},{正四棱柱},{直平行六面体},则
(A)(B)
(C)(D)它们之间不都存在包含关系
4.已知直线经过点,,则该直线的倾斜角为
(A)(B)(C)(D)
5.函数的定义域为
(A)(B)(C)(D)
6.已知三点在同一直线上,则实数的值是
(A)(B)(C)(D)不确定
7.已知,且,则等于
(A)(B)(C)(D)
8.直线通过第二、三、四象限,则系数需满足条件
(A)(B)(C)同号(D)
9.函数与的图象如下左图,则函数的图象可能是
(A)经过定点的直线都可以用方程表示
(B)经过任意两个不同的点的直线都可以用方程
表示
(C)不经过原点的直线都可以用方程表示
(D)经过点的直线都可以用方程表示
11.已知正三棱锥中,,且两两垂直,则该三棱锥外接球的表面积为
(A)(B)
(C)(D)
12.如图,三棱柱中,是棱的中点,平面分此棱柱为上下两部分,则这上下两部分体积的比为
(A)(B)
(C)(D)
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分,共20分.
13.比较大小:(在空格处填上“”或“”号).
14.设、是两条不同的直线,、是两个不同的平面.给出下列四个命题:
①若,,则;②若,,则;
③若//,//,则//;④若,则.
则正确的命题为.(填写命题的序号)
15.无论实数()取何值,直线恒过定点.
16.如图,网格纸上小正方形的边长为,用粗线画出了某多面体的三视图,则该多面体最长的棱长为.
三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
求函数,的值和最小值.
18.(本小题满分12分)
若非空集合,集合,且,求实数.的取值.
19.(本小题满分12分)
如图,中,分别为的中点,
用坐标法证明:
20.(本小题满分12分)
如图所示,已知空间四边形,分别是边的中点,分别是边上的点,且,
求证:
(Ⅰ)四边形为梯形;
(Ⅱ)直线交于一点.
21.(本小题满分12分)
如图,在四面体中,,⊥,且分别是的中点,
求证:
(Ⅰ)直线∥面;
(Ⅱ)面⊥面.
22.(本小题满分12分)
如图,直三棱柱中,,分别是,的中点.
(Ⅰ)证明:平面;
(Ⅱ)设,,求三棱锥的体积.
【答案】
一.选择题
DACBDBACABCB
二.填空题
13.14.②④15.16.
三.解答题
17.
解:设,因为,所以
则,当时,取最小值,当时,取值.
18.
解:
(1)当时,有,即;
(2)当时,有,即;
(3)当时,有,即.
19.
解:以为原点,为轴建立平面直角坐标系如图所示:
设,则,于是
所以
(Ⅱ)由(Ⅰ)可得相交于一点,因为面,面,
面面,所以,所以直线交于一点.
21.证明:(Ⅰ)分别是的中点,所以,又面,面,所以直线∥面;
(Ⅱ)⊥,所以⊥,又,所以⊥,且,所以⊥面,又面,所以面⊥面.
22.证明:(Ⅰ)连接交于,可得,又面,面,所以平面;
【二】
一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)
1.若直线x=1的倾斜角为α,则α=()
A.0°B.45°C.90°D.不存在
2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为
A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台
C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台
3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()
A.-1B.-2C.-3D.0
4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()
A.B.
C.D.
5.若直线与圆有公共点,则()
A.B.C.D.
6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()
A.-3B.1C.0或-D.1或-3
7.已知满足,则直线*定点()
A.B.C.D.
8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()
A.32B.24C.20D.16
9.过点且在两坐标轴上截距的绝对值相等的直线有()
A.1条B.2条C.3条D.4条
10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+),则旋转体的体积为()
A.2B.C.D.
11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()
A.B.C.D.
12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()
选择题答题卡
题号123456789101112
答案
二、填空题:(本大题共4小题,每小题4分,共16分。
高一数学期末考试试卷
高一期末考试数学试题
一、选择题:(每小题5分,共60分)
1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )
A、x-2y+7=0 B、2x+y-1=0
C、x-2y-5=0 D、2x+y-5=0
2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,
俯视图是一个圆,那么这个几何体是( )、
A、棱柱 B、圆柱 C、圆台 D、圆锥
3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )
A、-3 B、2 C、-3或2 D、3或-2
4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )
A、相交 B、相离 C、内切 D、外切
5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )
A、5 B、6 C、 5 或6 D、 6或7
6、若 是等比数列, 前n项和 ,则 ( )
A、 B、
7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )
A、4 B、3
C、2 D、1
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
8、当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )
A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0
9、方程 表示的曲线是( )
A、一个圆 B、两个半圆 C、两个圆 D、半圆
10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )
A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形
11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )
A、1 B、 C、 D、
12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,
且018,则这两条直线之间的距离的最大值和最小值分别是( )、
A、 B、 C、 D、
第II卷(非选择题共90分)
二、填空题:(每小题5分,共20分)
13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______
14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _
15、 若实数 满足 的取值范围为
16、锐角三角形 中,若 ,则下列叙述正确的是
① ② ③ ④
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
三、解答题:(其中17小题10分,其它每小题12分,共70分)
17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、
18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=3,求△ABC面积的最大值、
19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
20、 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
21、设数列 的前n项和为 ,若对于任意的正整数n都有 、
(1)设 ,求证:数列 是等比数列,并求出 的通项公式。
高一数学期末必考题型
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)
1.不等式 的解集为 ▲ .
2.直线 : 的倾斜角为 ▲ .
3.在相距 千米的 两点处测量目标 ,若 , ,则 两点之间的距离是 ▲ 千米(结果保留根号).
4.圆 和圆 的位置关系是 ▲ .
5.等比数列 的公比为正数,已知 , ,则 ▲ .
6.已知圆 上两点 关于直线 对称,则圆 的半径为
▲ .
7.已知实数 满足条件 ,则 的值为 ▲ .
8.已知 , ,且 ,则 ▲ .
9.若数列 满足: , ( ),则 的通项公式为 ▲ .
10.已知函数 , ,则函数 的值域为
▲ .
11.已知函数 , ,若 且 ,则 的最小值为 ▲ .
12.等比数列 的公比 ,前 项的和为 .令 ,数列 的前 项和为 ,若 对 恒成立,则实数 的最小值为 ▲ .
13. 中,角A,B,C所对的边为 .若 ,则 的取值范围是
▲ .
14.实数 成等差数列,过点 作直线 的垂线,垂足为 .又已知点 ,则线段 长的取值范围是 ▲ .
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)
15.(本题满分14分)
已知 的三个顶点的坐标为 .
(1)求边 上的高所在直线的方程;
(2)若直线 与 平行,且在 轴上的截距比在 轴上的截距大1,求直线 与两条坐标轴
围成的三角形的周长.
16.(本题满分14分)
在 中,角 所对的边分别为 ,且满足 .
(1)求角A的大小;
(2)若 , 的面积 ,求 的长.
17.(本题满分15分)
数列 的前 项和为 ,满足 .等比数列 满足: .
(1)求证:数列 为等差数列;
(2)若 ,求 .
18.(本题满分15分)
如图, 是长方形海域,其中 海里, 海里.现有一架飞机在该海域失事,两艘海事搜救船在 处同时出发,沿直线 、 向前联合搜索,且 (其中 、 分别在边 、 上),搜索区域为平面四边形 围成的海平面.设 ,搜索区域的面积为 .
(1)试建立 与 的关系式,并指出 的取值范围;
(2)求 的值,并指出此时 的值.19.(本题满分16分)
已知圆 和点 .
(1)过点M向圆O引切线,求切线的方程;
(2)求以点M为圆心,且被直线 截得的弦长为8的圆M的方程;
(3)设P为(2)中圆M上任意一点,过点P向圆O引切线,切点为Q,试探究:平面内是否存在一定点R,使得 为定值?若存在,请求出定点R的坐标,并指出相应的定值;若不存在,请说明理由.
20.(本题满分16分)
(1)公差大于0的等差数列 的前 项和为 , 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项, .
①求数列 的通项公式;
②令 ,若对一切 ,都有 ,求 的取值范围;
(2)是否存在各项都是正整数的无穷数列 ,使 对一切 都成立,若存在,请写出数列 的一个通项公式;若不存在,请说明理由.
扬州市2013—2014学年度第二学期期末调研测试试题
高 一 数 学 参 考 答 案 2014.6
1. 2. 3. 4.相交 5.1 6.3
7.11 8. 9. 10. 11.3 12. 13.
14.
15.解:(1) ,∴边 上的高所在直线的斜率为 …………3分
又∵直线过点 ∴直线的方程为: ,即 …7分
(2)设直线 的方程为: ,即 …10分
解得: ∴直线 的方程为: ……………12分
∴直线 过点 三角形斜边长为
∴直线 与坐标轴围成的直角三角形的周长为 . …………14分
注:设直线斜截式求解也可.
16.解:(1)由正弦定理可得: ,
即 ;∵ ∴ 且不为0
∴ ∵ ∴ ……………7分
(2)∵ ∴ ……………9分
由余弦定理得: , ……………11分
又∵ , ∴ ,解得: ………………14分17.解:(1)由已知得: , ………………2分
且 时,
经检验 亦满足 ∴ ………………5分
∴ 为常数
∴ 为等差数列,且通项公式为 ………………7分
(2)设等比数列 的公比为 ,则 ,
∴ ,则 , ∴ ……………9分
①
②
① ②得:
…13分
………………15分
18.解:(1)在 中, ,
在 中, ,
∴ …5分
其中 ,解得:
(注:观察图形的极端位置,计算出 的范围也可得分.)
∴ , ………………8分
(2)∵ ,
……………13分
当且仅当 时取等号,亦即 时,
∵
答:当 时, 有值 . ……………15分
19.解:(1)若过点M的直线斜率不存在,直线方程为: ,为圆O的切线; …………1分
当切线l的斜率存在时,设直线方程为: ,即 ,
∴圆心O到切线的距离为: ,解得:
∴直线方程为: .
综上,切线的方程为: 或 ……………4分
(2)点 到直线 的距离为: ,
又∵圆被直线 截得的弦长为8 ∴ ……………7分
∴圆M的方程为: ……………8分
(3)假设存在定点R,使得 为定值,设 , ,
∵点P在圆M上 ∴ ,则 ……………10分
∵PQ为圆O的切线∴ ∴ ,即
整理得: (*)
若使(*)对任意 恒成立,则 ……………13分
∴ ,代入得:
整理得: ,解得: 或 ∴ 或
∴存在定点R ,此时 为定值 或定点R ,此时 为定值 .
………………16分
20.解:(1)①设等差数列 的公差为 .
∵ ∴ ∴
∵ 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项
∴ 即 ,∴
解得: 或
∵ ∴ ∴ , ………4分
②∵ ∴ ∴ ∴ ,整理得:
∵ ∴ ………7分
(2)假设存在各项都是正整数的无穷数列 ,使 对一切 都成立,则
∴
∴ ,……, ,将 个不等式叠乘得:
∴ ( ) ………10分
若 ,则 ∴当 时, ,即
∵ ∴ ,令 ,所以
与 矛盾. ………13分
若 ,取 为 的整数部分,则当 时,
∴当 时, ,即
∵ ∴ ,令 ,所以
与 矛盾.
∴假设不成立,即不存在各项都是正整数的无穷数列 ,使 对一切 都成立. ………16分
以上就是高一数学期末模拟题的全部内容,(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的值.20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.(1)写出f(x)的最小正周期及图中x0,y0的值;(2)求f(x)在区间-π2。